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Abstract

In current power markets, the bulk of electricity is sold wholesale and transported

to consumers via long-distance transmission lines. Recently, decentralized local energy

markets have evolved, often as isolated networks based on solar generation. We analyze

strategic pricing, investment, and welfare in local energy markets. We show that local

energy markets yield competitive equilibrium prices and provide efficient investment

incentives. Yet, we find that strategic behavior leads to allocative inefficiency. We

propose a clearing mechanism that induces truth-telling behavior and restores first-

best welfare.
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I. Introduction

Electricity access for all has become a major topic for international energy, climate, and

regulatory policy. Especially in developing economies, small energy systems based on solar

generation increasingly provide rural areas with electricity. Local peer-to-peer markets,

eventually separated from large scale power grids, have however also been field-tested in

established electricity systems.1

In this article, we provide a model for studying electricity provision in local energy

markets. The model allows to analyze pricing behavior and investment incentives, and to

quantify welfare implications that arise from strategic behavior of participating households.

Because we find that strategic behavior can lead to allocative inefficiency, we also propose a

clearing mechanism for local energy markets that alleviates strategic behavior and restores

first-best welfare.

The markets that we analyze have been emerging as alternatives to costly expansion of

large-scale grids (Fowlie et al., 2019). More specifically, local energy markets consist of a mi-

crogrid that can operate self-sufficiently and enable trade of locally generated energy between

all connected households. While microgrids can work in stand-alone mode, they are also ca-

pable of interconnecting with other microgrids and, if available, to the greater distribution

and transmission grid (Urpelainen, 2014). Due to their ability for operating stand-alone,

local energy markets are however more common in rural areas with no or unreliable access

to transmission grids (Perez-Arriaga et al., 2019). Abundant examples of interconnecting off-

grid consumers in isolated local markets can currently be found in African and South-Asian

countries, such as Bangladesh, where pilot peer-to-peer trading is emerging amongst pro-

sumer households.2 Because we study isolated energy markets without a connection to the

1Established electricity systems consist of complex vertical and sequential market arrangements. Wilson
(2002) presents an overview on typical electricity market architecture.

2For the Bangladesh market, see https://me-solshare.com.
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transmission grid, our model is mostly tailored to local markets in rural areas that operate

in stand-alone mode.

In the environment that we study, households can decide to participate in a local market

for electricity, where all participating households are connected to an isolated local microgrid.

Households participate by demanding electricity from the local microgrid and by investing

in generating plants, here solar plants, that add supply to the local network. Households

that have invested in generation capacity can be net-selling or net-buying from the mar-

ket, depending on whether their generation covers more or less than their consumption.

Given aggregate household demand and aggregate solar supply, the market constitutes an

equilibrium price for electricity. We model market clearing using a demand function ap-

proach. Having characterized pricing and investment equilibria in local energy markets, we

subsequently analyze welfare implications and propose a clearing mechanism that induces

truth-telling behavior and guarantees first-best welfare.

Our results on pricing and investment outcomes in local markets are substantially differ-

ent from traditional energy markets, composed of top-down generation, transmission, and

retail supply chains. In particular, we find that local energy markets yield competitive mar-

ket prices. Importantly, this result holds even for a small number of market participants

(i.e., households or prosumers) and despite strategic pricing behavior by all participating

households. The market price remains competitive because both net-buying and net-selling

households exercise strategic pricing, and the impact of their strategies on equilibrium prices

cancels out. In essence, households engage in demand reduction in a similar fashion as in

Ausubel et al. (2014). Where households have invested in production plants and are net-

sellers to the market, they however inflate their demand to push up market prices. In equi-

librium, demand reduction and demand inflation cancel out, ensuring competitive prices.3

3Intuitively, equilibrium prices are competitive, because the incentives of net-buying and net-selling house-
holds are the same. To see this, consider a household i that buys energy from the market. Its equilibrium
demand reduction has to be optimal against the competing demand functions from all other households
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Furthermore, we show that competitive prices provide efficient investment incentives.

Although market prices are competitive and investment is efficient, we find that strategic

pricing behavior can cause allocative inefficiency. Allocation is not optimal as, intuitively,

net-buyers aim to decrease prices by announcing lower demand, while net-selling households

aim to increase prices by announcing relatively higher demand. In equilibrium, prices are

competitive but households’ consumption levels still follow their strategically announced

demand profiles. As a result, allocative inefficiency arises and reduces welfare.

We show that altering payment rules can increase allocative efficiency and restore first-

best welfare. Specifically, we propose network tariffs that can be organized by a microgrid

operator and which complement the uniform energy prices. These payments make it optimal

to announce truth-telling demand and thereby guarantee first-best welfare. The payments

are composed of a fixed fee paid by the households for participating in the market, similar to a

one-off network connection charge, and a payment that is a function of whether households

are net-sellers or net-buyers. Importantly, the payments can be organized such that the

microgrid operator breaks-even when organizing the market. Our mechanism hence is feasible

and budget balanced, and only consists of energy prices and network tariffs.

The main idea of this mechanism draws from the regulation of utilities as proposed by

Loeb and Magat (1979). In our application, the one-off network charges paid by households

to the microgrid operator correspond to the franchise bidding stage in Loeb and Magat

(1979), i.e., they allow households to participate in the local market. The variable incentive

payments that the microgrid operator then pays to the households correspond to the subsidy

stage in Loeb and Magat (1979). One important difference is that energy demand, and thus

the incentive payments organized by the microgrid operator, are uncertain, and hence the

microgrid operator breaks-even in expectation.

j 6= i. If household i instead sells energy to the market, its optimal supply likewise depends on the demand
functions of all households j 6= i. Hence, net-buying and net-selling households maximize against the same
set of competing demand functions.
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Finally, we present several corollary results relevant to the organization of local energy

markets. For instance, our results show that welfare increases the more households partici-

pate. This finding highlights the relevance of interoperability of local markets, that often rely

on different technology standards. While some microgrid systems in developing economies

use DC networks, other systems rely on AC networks, especially where markets are larger

(US AID, 2017).4 Our results hence show that investing in interoperability can raise welfare

and should be fostered in local energy markets.

Our findings contribute to several strands of research. First, our findings contribute to

the large literature on electricity market architecture. Beginning with the deregulation of

this sector, the literature has paid significant attention to the different levels of the supply

chain, i.e., wholesale markets (Newbery, 1998; Wolfram, 1999; Borenstein et al., 2000; Fabra

et al., 2006; Bushnell et al., 2008; Reguant, 2014; Schwenen, 2015), retail market design

and consumer behavior (Joskow and Tirole, 2006; Allcott, 2011; Allcott and Rogers, 2014;

Giulietti et al., 2014; Poletti and Wright, 2020), and network regulation (Joskow, 2008;

Tanger̊as, 2012). More recently, the literature started investigating the design of electricity

markets with high shares of low-carbon generation (Holmberg and Wolak, 2018; Tanger̊as and

Mauritzen, 2018) and the use of distributed generation (Brown and Sappington, 2017). We

add to this literature by providing a model on the efficiency of local energy markets, where

strategic households simultaneously act as producers, consumers, and traders, and where we

abstract from the canonical producer to consumer, wholesale to retail market architecture.

The operation of local energy markets has also been covered by interdisciplinary ap-

proaches at the intersection with the engineering and operations research literature. This

4Currently applied DC systems have relatively higher losses and often are not rolled out for more than
200 meters. In addition, most available appliances connected to local energy systems are running on AC
(US AID, 2017). AC can be converted to DC using rectifiers, while DC can be converted to AC by using
inverters. We do not model competition between standards and focus on efficiency and market design within
one network. For conditions under which common network standards can generally be achieved see, e.g.,
Farrell and Saloner (1988) and Baake and Boom (2001).
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stream of research explicitly focuses on the underlying physical attributes of local energy

markets, such as network constraints, consumption characteristics, power flows, network

stability, and the IT infrastructure. Dumitrescu et al. (2020) describe the underlying ap-

plications, usage characteristics, and consumption patterns in local energy markets. Pinto

et al. (2021) discuss relevant IT tools and different concepts for trading platforms, empha-

sizing the importance of the required physical and software infrastructure. Khorasany et al.

(2020) and Tushar et al. (2020) study different peer-to-peer algorithms and market clear-

ing techniques and stress the need to efficiently match supply and demand for households

with different demand patterns. While our model does not share the same granularity as

the more technical literature, we adopt as many of the techno-economic aspects as possible.

In particular, our model and proposed clearing mechanism for inducing truth-full behavior

contribute to the stream of this literature that explores clearing algorithms in local energy

markets.

We also relate to the literature on electricity access and the benefits of electrification.

Dinkelman (2011) finds positive effects on employment of a large grid connection plan in

South Africa. Lee et al. (2020) provide experimental evidence on electrification in rural

Kenya, and identify scale economies of connecting households to the power grid. Reporting

evidence from India, Aklin et al. (2016) find that only a few hours of additional electricity

supply increases household satisfaction substantially. Comello et al. (2017) find that rural

electrification lags behind policy goals and identify the threat of grid extension as a barrier

for further investment. We add to this growing literature on electrification with a theoretical

study. To our knowledge, no analytical model has so far been developed to understand

efficiency and regulatory requirements for the electrification through local energy markets.

Last, our model adds to the literature on markets that follow double auction formats.5

Beginning with Wilson (1979), Smith et al. (1982), and Klemperer and Meyer (1989), this

5See Friedman and Rust (eds.) (1993) for an overview.
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literature has studied market interaction via demand and supply functions. The supply

function framework has been widely used to study wholesale power markets (Green and

Newbery, 1992; Baldick et al., 2004; Hortacsu and Puller, 2008), while demand function

equilibria have been used to model strategies of traders with different information sets (Kyle,

1989) and in sequential double auctions (Du and Zhu, 2017). Our model draws from the

demand function equilibrium approach, that we amend to study equilibrium pricing in peer-

to-peer markets for energy.

The remainder is organized as follows. Section two discusses the institutional environment

and outlines a model for local energy markets. In section three, we study equilibrium pricing

and investment. Section four presents a clearing mechanism that guarantees truth-telling

behavior and first-best welfare. Section five concludes and discusses policy implications.

II. A model of local energy markets

Market participants and technology. Figure 1 shows the stylized market environment.

We study a local energy market where n households are connected to a microgrid, and have

no access to the larger transmission network. Each household has demand for electricity and

can invest in generation assets (here solar rooftop plants) to generate and consume electricity.

In case of excess electricity, each household can sell to all n − 1 neighbors via the common

microgrid. Vice versa, when own generation capabilities are exhausted, each household can

buy electricity from its neighbors. Depending on the amount of installed solar plants relative

to aggregate demand, local energy trade establishes an equilibrium price for electricity.6

We analyze energy trading that is organized through the matching of supply and demand

from utility-maximizing households. We do not specify the IT infrastructure in which trading

6In addition, storage units can operate in local energy markets, arbitrage energy prices, and increase
grid stability. We exclude storage units from the analysis. Andrés-Cerezo and Fabra (2022) show that the
efficiency of energy storage depends on market structure and ownership. Including independently owned
storage units with no capacity constraints and linear bid functions does not change the results in our model.
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Figure 1: Schematic representation of local energy market with rooftop solar plants.

takes place, but assume that the installed infrastructure allows households to communicate

their demand for energy to a central market clearing entity, i.e., a microgrid operator. We

assume that the microgrid operator is not vertically integrated and has no incentives to

behave strategically.7 We do not consider transactive energy and other technical issues

related to network stability, such as backup reserve or balancing markets. Instead, we focus

on the role of the microgrid operator in organizing the market and allow the operator to

collect network tariffs for this sake.

Market clearing and prices. As introduced above, households can face energy prices

and network payments. We consider a market where households announce their demand

for electricity, while supply is determined by all generating resources that are connected to

the microgrid. Hence, all production units are pooled, produce at full output, and cannot

be used strategically. Aggregate demand and supply determine the price for electricity,

equilibrium consumption, and net-selling (buying) positions of each household. We model

market clearing as a one shot game, in which households submit their demand functions,

and abstract from whether households specify demand for a course of an hour, day, or any

specified peak or off-peak period.8 We assume that all households are connected to the

7Microgrid operators have a similar role as independent system operators that manage high-voltage
transmission grids, and can also be the owners of the local grid. Wang and Huang (2015) provide an analysis
of microgrids with vertically integrated operators that also own generation assets.

8Local energy markets often feature both network tariffs and variable energy prices. For instance, time-
variant energy prices may account for varying demand during day and night. For a detailed description of
tariff mechanisms see US AID (2017).
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microgrid, and that households who do not invest in solar plants hence must rely on buying

energy from their neighbors.

In addition to the energy price, we study network tariffs in the local market. We consider

network payments that can be organized by the microgrid operator and which complement

the energy price. We model network tariffs that are composed of a fixed fee paid by the

households for participating in the market, similar to a one-off network connection charge,

and a payment that is a function of how much households consume, similar to a volumetric

network tariff in traditional distribution systems (Azarova et al., 2018). As we show, network

tariffs can be organized such that they incentivize truth-telling behavior, while allowing the

microgrid operator to break-even when organizing the market. Our market mechanism hence

is feasible and budget balanced, and only consists of energy prices and network payments.

Preferences. The utility of each household i is denoted as Ui(xi, εi) and is concave in xi.

Utility depends on the realization of an idiosyncratic error term, εi, known only to household

i. Formally, we assume

(1) Ui (xi, εi) = (θi + εi)xi −
1

2
x2
i .

The realization of the demand shock is known to household i prior to participating in

power trading, and we assume that shocks are independent. We hence consider an inde-

pendent private value setting throughout the power trading stage.9 Because the utility of

household i is private information, the demand of its neighboring households is random and

hence the equilibrium power price is uncertain.

9As discussed further below, our model takes into account that households, however, do not yet know their
realized demand shock at the investment stage, this is, when they decide on their investment in generation
assets. Put differently, households maximize ex-ante utility at the investment stage and interim utility at
the pricing stage.
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III. Equilibrium pricing

Households simultaneously decide on their consumption schedule Xi(p, εi) that specifies their

demand from the local grid at each price p. In equilibrium, each household consumes

Xi(p
∗, εi) where p∗ is the equilibrium price that equates supply and demand. Formally,

the equilibrium price is given by

(2) p∗ :
n∑
i

Xi(p, εi) =
n∑
i

qi,

with qi being the installed generation capacity of household i and the sum is taken over all

households i = 1, ..., n. A household’s profit from trading electricity becomes p(qi−Xi(p, εi)).

Consequently, the quasi-linear utility from consumption and trade is

(3) Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi)).

Suppose that the idiosyncratic consumption shock εi is drawn from a distribution F prior

to submitting demand schedules. Let the support of εi be equal for all households, finite

with εi ∈ [−εo, εo], and symmetric around E[εi] = 0. Because the type of each neighboring

household (i.e., their realized demand) and therefore the clearing price is unknown prior to

announcing demand, strategies must be Bayesian-Nash optimal. Households must maximize

expected utility and, before deciding on Xi(p, εi), form an expectation on aggregate demand

and the equilibrium price.

To capture the uncertainty in price, conditional on household i’s demand function, we

draw from the auction literature (Wilson, 1979; Hortacsu and Puller, 2008) and use the mar-

ket clearing condition in equation (2) to map randomness from demand to price. Specifically,

the distribution function of the equilibrium electricity price p∗, given household i’s demand
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Xi at price p, becomes

Hi(p,Xi(p, εi)) = Pr (p∗ ≤ p | Xi)

= Pr

(
n∑
j 6=i

Xj(p, εj) +Xi ≤
n∑
i

qi

∣∣∣∣ Xi

)
,(4)

where the sum is taken over all n households except household i. The distribution function

Hi states the probability that p∗ ≤ p, this is, the probability that supply is larger than

demand at this price. The support of Hi on [p, p̄] depends on the support of all idiosyncratic

demand shocks.

Using this probability measure, the expected utility of household i can be written as

(5) EUi =

∫ p

p

[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))] dHi(p,Xi(p, εi)).

Households maximize expected utility by specifying optimal demand over the range of possi-

ble prices. In optimum, a household is indifferent between shifting demand from one possible

price level to another. Formally, as shown in Appendix A.I., optimality is given by the Euler-

Lagrange first order condition, which after rearranging yields:

(6)
∂Ui(Xi(p, εi), εi)

∂Xi

− p = (qi −Xi(p, εi))
HXi

(p,Xi(p, εi))

Hp(p,Xi(p, εi))
,

where HXi
and Hp are the derivatives of Hi with respect to Xi and p.10 To interpret the

optimality condition in equation (6), note that Hp is the probability density function of

price and must be positive. In contrast, HXi
must be negative, because additional demand

decreases the likelihood that the price is below any given value. Consequently,
HXi

Hp
< 0, and

equation (6) shows that in equilibrium households that are net-sellers to the local market

must have marginal utility from consumption below the market price. We summarize this

10We implicitly assume that for all qi and εi we have Xi > 0 and p ≥ 0.
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finding in the following Proposition.

Proposition 1. Households that are net-sellers to the local market mark-up sales above

their marginal utility of consumption. Households that are net-buyers from the local market

mark-down demand below their marginal utility of consumption, i.e.,

∂Ui(Xi(p, εi), εi)

∂Xi

< p ⇐⇒ qi > Xi(p, εi)

∂Ui(Xi(p, εi), εi)

∂Xi

> p ⇐⇒ qi < Xi(p, εi).

Proof. The result follows from equation (6). A detailed proof of the first order condition is

shown in Appendix A.I..

The optimality condition suffices for computing the equilibrium demand strategies, given

model primitives for household utility on the left hand side of equation (6). Notice that

also the derivatives of Hi on the right hand side of equation (6) depend on the functional

form of utility and its corresponding demand function. For this reason, equation (6) can

be evaluated analytically only in few cases (Hortaçsu, 2011). We hence assume utility as in

equation (1) above, which exhibits saturation and results in linear demand.11

Next, we first derive a household’s optimal strategy, given linear demand, and further

below prove that equilibria in linear strategies indeed exist. Given utility as in equation (1),

household i’s marginal utility is given by

(7)
∂Ui(xi, εi)

∂xi
= θi + εi − xi.

11The focus on linear bid functions is common in the literature. Du and Zhu (2017) prove that linear
demand equilibria exist when trading takes place in sequential double auctions. Foster and Viswanathan
(1996) find linear equilibria when traders learn from other traders’ signals. Vives (2011) analyzes linear supply
function strategies where sellers’ cost functions include common and private value components. Baldick et al.
(2004) presents an overview of different types of supply function equilibria, including cases where sellers face
capacity limits.
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The parameter θi represents a household’s maximal willingness to pay (for εi = E[εi] = 0)

and can be viewed as a parameter that specifies household size. We rank households sizes

as θ1 > θ2 > ... > θn. Given true willingness to pay of θi + εi − xi as indicated above, each

household can shade its demand and announce a linear demand function of the form

(8) Xi(p, εi) = αi + βiεi − γip,

where αi, βi, and γi are choice variables for each household. Put differently, households can

hide their reservation value by announcing αi instead of θi and can shade their sensitivity to

the error term and price by choosing βi and γi.

Substituting demand as specified above in (8) into the optimality condition in (6) and

using that, as shown in Appendix A.I.,
HXi

Hp
= −1∑n

j 6=i γj
, we can rewrite a household’s optimality

condition to

(9) θi + εi − p− (αi + βiεi − γip)︸ ︷︷ ︸
Difference between true and strategic demand

+
1∑n
j 6=i γj

(qi − (αi + βiεi − γip))︸ ︷︷ ︸
Net position

= 0.

This rearranged optimality condition shows that the extent of strategic demand reduction

(inflation) equals a household’s net position, adjusted for the slope of competing demand

functions 1∑n
j 6=i γj

. Moreover, equation (9) reveals that the incentives to strategically announce

higher or lower demand both depend on the slope of competing demand, and that the

marginal impact of Xi(p, εi) = αi + βiεi − γip on the left hand side of (9) is equal to

(10) −

(
1 +

1∑n
j 6=i γj

)

and independent of whether a household is net-buying or net-selling. Hence, the marginal

incentives to decrease (increase) their quantities Xi(p, εi) are symmetric for net-buying (net-

selling) households.
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Applying coefficient matching to equation (9), we find that for n ≥ 3 households and

positive trading volumes, there exists a unique strategy in linear demand functions. As

shown in Appendix A.II., equilibrium demand functions X∗i (p, εi) are characterized by

(11) αi =
qi + θi

∑n
j 6=i γj

1 +
∑n

j 6=i γj
and βi = γi =

∑n
j 6=i γj

1 +
∑n

j 6=i γj
.

This equilibrium is in stark contrast to truthful demand of αi = θi and βi = γi = 1. As

can be seen, bid shading for the reservation value, αi, depends on the household’s amount

of solar plants. Moreover, the steepness of household i’s demand function, γi, depends on

the slope of other households’ demand functions. This is intuitive because in equilibrium

each household optimizes its demand schedule vis-à-vis the slope of its residual supply, which

in turn is determined by the demand functions of its neighbors. This equilibrium feature

reveals the complementarity in demand strategies: The more price-sensitive the demand of

household i’s neighbors becomes (the more
∑n

j 6=i γj in equation (9) increases), the less can

household i impact the market price and thus has little incentives to deviate from announcing

true marginal utility. As stated in the following Proposition, this complementarity results

in symmetric equilibrium demand.

Lemma 1. Households submit symmetric demand functions, conditional on their size θi

and installed generation capacity qi. In markets with n ≥ 3, the unique equilibrium demand

function parameters are

(1) γ∗i = n−2
n−1

(2) β∗i = n−2
n−1

(3) α∗i = qi+θi(n−2)
n−1

.

With n < 3, no trade occurs in the local market and each household consumes its own

electricity.
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Proof. First, we show in Appendix A.II. that trade ceases for n < 3. For n ≥ 3 and given

symmetry, rearrange γi from equation (11) to γi =
∑n

j 6=i γj

1+
∑n

j 6=i γj
= (n−1)γi

1+(n−1)γi
∀ i. Solving for γi

yields γ∗i = n−2
n−1

. The equilibrium parameters α∗i and β∗i follow immediately. Appendix A.II.

further shows that asymmetric strategies cannot exist if γi > 0.

So far, the strategies in Lemma 1 rely on the supposition of linear demand, as stated in

equation (8).12 Next, we prove that there exists an equilibrium in linear demand functions.

Proposition 2. There exists an equilibrium in linear demand functions.

Proof. Given that all households j 6= i submit linear demand schedules Xj(p, εj) with any

constant slope γj, we show that the best reply of household i is to also submit a linear

demand function. We present the full proof in Appendix A.III., including a proof of the

sufficiency conditions for linear equilibrium strategies.

The strategy in Lemma 1 consequently belongs to the class of equilibria as derived in

the above proposition. Moreover, from Lemma 1 it follows that lim
n→∞

α∗i = θi and lim
n→∞

β∗i =

lim
n→∞

γ∗i = 1, so that strategic demand shading ceases for a large number of neighbors.

Figure 2 illustrates equilibrium demand functions for three households so that βi = γi =

1
2
. Panel (a) depicts true demand (solid line) and strategic demand (dashed line) for a

representative household with θi = 4, εi = 1, and qi = 0. Panel (b) shows true demand

(solid line), strategic demand (dashed line), and solar capacity (dotted horizontal line) for a

household with θi = 4, εi = 1, and qi = 1.

As can be seen in panel (a), households that do not produce electricity strategically

announce lower demand and mark-down their demand at any price. This strategy is similar

12Note that the equilibrium strategy in Proposition 1 is also ex post optimal, i.e., after households have
observed the realized demand functions of other households. This result follows because the uncertainty in
demand is additive. Following arguments in Hortacsu and Puller (2008), all uncertainty, from the perspective
of household i, shifts the residual supply curve but does not rotate it. The optimal demand function yields
a pointwise best-response to every possible realization of the demand from competing households. Put
differently, only the slope of demand,

∑n
j 6=i γj , but not the realized level of demand is relevant for the

best-response function, and hence strategies are ex post optimal.
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Figure 2: Demand functions for a local market with three households.

(a) θi = 4, εi = 1, qi = 0 (b) θi = 4, εi = 1, qi = 1

to standard demand reduction equilibria (e.g., Ausubel et al., 2014), where bids for the first

unit are equal to marginal utility and demand is more understated for each additional unit.

As apparent in panel (b), also the household with qi = 1 strategically reduces demand.

However, as compared to the demand curve of its neighbors with no solar output, this

household shifts demand upward when selling. This household marks-up its demand, as it

intends to increase the market price to its favor. For all Xi(p, εi) > qi = 1 this household

demands electricity at prices lower than marginal utility, while for Xi(p, εi) < qi = 1 it is

willing to sell electricity at a mark-up on marginal utility.

Using Lemma 1 and equation (8), the equilibrium demand schedule becomes

(12) X∗i (p, εi) =
n− 2

n− 1
(θi + εi − p) +

1

n− 1
qi,

and the market clearing condition in (2) yields

(13)
n∑
i

(
n− 2

n− 1
(θi + εi − p) +

1

n− 1
qi

)
=

n∑
i

qi.
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The equilibrium price is

(14) p∗ =
1

n

n∑
i

(θi + εi − qi).

and depends only on market fundamentals. We summarize the above findings in the following

two corollaries.

Corollary 1. The equilibrium market price is independent of demand reduction strategies

and only depends on market fundamentals for demand, θi and εi, and supply qi of all house-

holds i = 1, .., n. Demand functions determine market shares in consumption at the compet-

itive market price.

Corollary 2. Strategically announced demand in equilibrium leads to allocative inefficiency.

Households that are net-buyers from the market consume too little. Households that are

net-sellers to the market consume too much energy.

First, Corollary 1 illustrates that the equilibrium price is independent of bid shading,

because strategies of net-buying and net-selling households cancel out. To see this, con-

sider the case where n− 1 households have zero supply and only one household i generates

electricity. In equilibrium, the market supply from household i of qi −Xi(p, εi) must equal

demand of the n− 1 buying households,
∑n

j 6=iXj(p, εj). The demand reduction of the buy-

ing households will be exactly offset by the selling household. This requires that the selling

household reduces its supply by announcing higher demand and consuming more electricity.

The household consumes more electricity, because the cost of consumption declines when

at the same time the price of its supply increases. Furthermore, note that the equilibrium

market price only depends on the mean household size, and that asymmetric households,

i.e., the variance in household size, does not impact the equilibrium price.

Second, Corollary 2 follows from re-visiting Figure 2 that shows that at any poten-

tially realized equilibrium price, announced demand is below true demand for net-buying
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households, while announced demand is above true demand for net-selling households. Fur-

thermore, Corollary 2 follows from comparing equilibrium demand schedules in (12) to the

true demand in equation (8).13

Finally, notice that although households can always buy energy at the competitive market

price, investment still matters, because the distribution of generation assets among house-

holds impacts their consumption shares.

III(i). Investment

We consider investment to take place prior to market clearing and prior to announcing

demand. At the investment stage, households consequently do not know their realized de-

mand shock εi. In addition, households have to form a prior on the demand shock of their

neighbors.

To separate out the different demand shocks, define
∑n

j 6=i εj := Ψi with gi(Ψi) being

the density function of Ψi. Recalling that εi ∈ [−εo, εo], Ψi must be distributed in [−(n −

1)εo, (n − 1)εo]. Using this definition, the equilibrium price in (14) can be rewritten as

p∗ = 1
n

[Ψi + εi +
∑n

i (θi − qi)]. Household i finds its optimal investment by maximizing

expected utility in (5) net of investment costs, weighted over all possible demand shocks:

(15) E[EUi] =

∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

[Ui(Xi(p
∗, εi), εi) + p∗(qi −Xi(p

∗, εi))] gi(Ψi)dΨif(εi)dεi−psqi

where ps is the market price for solar units and represents the investment cost per solar unit.

The first order condition for household i’s optimal investment choice becomes14

(16) qi = θi − (n− 1)ps −
n− 2

n

n∑
i

(qi − θi) .

13Note that larger households reduce demand by more and thus cause relatively larger inefficiencies.
14We focus on interior solutions.
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Equation (16) shows that individual investment in solar plants is a strategic substitute to

aggregate market investment. Summing up the optimality condition over all n households,

we obtain
∑n

i qi =
∑n

i θi − n
(
(n− 1)ps − n−2

n

∑n
i (qi − θi)

)
. Solving this expression for∑n

i qi yields aggregate equilibrium investment of

(17)
n∑
i

q∗i =
n∑
i

θi − nps.

Last, when substituting the aggregate equilibrium investment in (17) into the expression

for optimal investment of household i in (16), rearranging yields q∗i = θi−ps. This solution is

straightforward: each household only invests in solar plants as long as its maximum valuation

for electricity, θi, is above the price of solar plants. We summarize this finding in the next

Proposition.

Proposition 3. Household i’s equilibrium investment in generation assets is qi = θi − ps.

Proof. The result follows from equation (17) and is derived in full in Appendix B.I..

It follows that larger households contribute with relatively more supply to the local

market. Using Proposition 3 and equation (14), the equilibrium power price—given optimal

investment—eventually becomes p∗ = 1
n

∑n
i (εi + ps). With E[εi] = 0, the expected power

price of the local market simply is

(18) E[p∗] = ps,

implying that, for optimal investment levels, the expected electricity price in local energy

markets equals the costs of generation assets.

19



IV. A clearing mechanism for truthful bidding

Our results so far show that energy prices are competitive and reflect the costs of generating

units, but that strategic household behavior introduces allocative inefficiency. The results of

this section illustrate that a microgrid operator can impose additional payments and network

tariffs to induce truth-telling behavior, mitigate allocative inefficiency and guarantee first-

best welfare. To see this, consider the expected utility of household i when having to pay

Z(Xi(p, εi), qi) to the microgrid operator:

(19) EUi =

∫ p

p

[Ui (Xi(p, εi), εi)− Z(Xi(p, εi), qi) + p(qi −Xi(p, εi))] dHi(p,Xi(p, εi)).

As can be seen in equation (19), we consider a clearing mechanism where households pay the

uniform energy price, p, plus an additional charge Z. Maximizing and proceeding as above,

the first order condition can be written as

(20)
∂

∂Xi

Ui (Xi(p, εi), εi) = p+
∂

∂Xi

Z(Xi(p, εi), qi) + (qi −Xi(p, εi))
HXi

(p,Xi(p, εi))

Hp(p,Xi(p, εi))
.

Note that if the last two terms on the right hand side cancel out, it is optimal for household

i to announce true demand. Therefore, we obtain the following Proposition.

Proposition 4. With a price p determined by market clearing and additional payments

Z(Xi(p, εi), qi) =

∫ Xi(p,εi)

qi

qi − x
n− 1

dx+
σ

2n

imposed by the microgrid operator, there exists an equilibrium such that households submit

their true demand Xi(p) = θi + εi − p.
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Proof. Assuming truthful bidding of all other households j 6= i and using

HXi
(p,Xi(p, εi))

Hp(p,Xi(p, εi))
= − 1

n− 1
as well as

∂

∂Xi

Z(Xi(p, εi), qi) =
qi −Xi

n− 1

the first order condition in (20) reduces to

∂Ui(Xi(p, εi), εi)

∂Xi

= p and thus Xi(p, εi) = θi + εi − p,

so that equilibrium demand functions are truth-telling.

The main point is that with truthful bidding of all other households the marginal payment

(21)
∂

∂Xi

Z(Xi(p, εi), qi) =
qi −Xi

n− 1

exactly offsets the strategic incentives for household i to deviate from truthful bidding. Note

further, that according to the first term in Z(Xi(p, εi), qi), net sellers, i.e., qi > Xi(p, εi), as

well as net buyers, i.e., qi < Xi(p, εi), receive a subsidy from the microgrid operator:

(22)

∫ Xi(p,εi)

qi

qi − x
n− 1

dx < 0 for both qi > Xi(p, εi) and qi < Xi(p, εi).

Notice that the above subsidy mechanism draws from the idea in Loeb and Magat (1979)

on optimal utility regulation. More specifically, the microgrid operator’s payments to the

households stated in equation (22) are similar to the payments that regulators pay to utilities

for the consumer surplus they generate. The one-off network charge paid by participating

households in Proposition 4 of σ
2n

corresponds to the payments generated in the franchise bid-

ding stage of the Loeb-Magat mechanism. Importantly, to implement the above mechanism

it suffices if the microgrid operator knows the structure of household utility and observes

the amount of installed generation assets qi. As in Loeb and Magat (1979), the mechanism
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requires information on the slope of demand. Yet, the microgrid operator does not require

any data on the household’s private information, i.e., on their demand shock εi.

IV(i). Welfare and microgrid operator’s profit

We conclude our analysis by investigating the welfare implications of our proposed mecha-

nism, including profits of the microgrid operator. First, notice that the network payments

Z depend on household i’s investment decision when facing network tariffs. We therefore

start by showing that the above introduced clearing mechanism does not change equilibrium

investment. Solving the market clearing condition

(23)
n∑
i

(αi + βiεi − γip) =
n∑
i

qi

for true demand with αi = θi and β = γ = 1 yields the identical market price as stated in

equation (2) for the equilibrium with strategic households. In a similar fashion, re-visiting

expected utility at the investment stage in equation (15) and using truthful demand yields

equilibrium investment of

(24) qi = θi − ps.

As can be seen, equilibrium investment again is identical to the case with strategic demand

in equation (17) above. This finding allows to state the next Proposition on welfare and the

budget of the microgrid operator.

Proposition 5. With a price p determined by market clearing and additional payments

Z(Xi(p, εi), qi) =

∫ Xi(p,εi)

qi

qi − x
n− 1

dx+
σ

2n

imposed by the microgrid operator, there exists an equilibrium such that
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(1) households invest according to qi = θi − ps

(2) the expected profit of the network operator is equal to zero

(3) all households are better off as compared to the market without such payments.

Proof. The derivation of equilibrium investment can be found in Appendix B.II.. Using qi =

θi − ps and taking expectations over Z(Xi(p, εi), qi), the expected revenue of the microgrid

operator turns out to be zero E[Π] = 0 which proves the second statement above. To prove

the third statement, we use equilibrium prices, investment, and demand for the truth-telling

equilibrium and find utility of

E[EU∗i ] =
1

2

(
(θi − ps)2 +

n− 1

n
σ

)
,

where σ denotes the variance of the demand shock, E[ε2
i ]. Using strategic demand instead,

we find utility of

E[EUi] =
1

2

(
(θi − ps)2 +

n− 2

n− 1
σ

)
with

E[EU∗i ]− E[EUi] =
σ

2(n− 1)n
> 0,

so that households are better off as compared to the market without additional payments.

As shown, welfare is strictly higher under the truth-telling mechanism with network tariffs

as compared to the strategic equilibrium. Notice that the difference in welfare is independent

of the distribution of household sizes. Because market prices and investment are identical for

the two cases, this result is entirely driven through the increase in allocative efficiency from

truth-telling behavior.15 Further, notice that the expected profit of the microgrid operator

15Full welfare expressions can be computed using a proxy for the distribution of the demand shock. For
instance, with εi being uniformly distributed and Ψi following an Irwin-Hall distribution, expected utility
for the truth-telling equilibrium equals 1

2 (θi − ps)2 + n−1
6n ε20.
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is zero as a result of the fixed one-off payment σ
2n

, which has however no strategic effect

on household behavior. Therefore, the mechanism above increases welfare and is budget

balanced for the microgrid operator.

As a final corollary result, Proposition 5 shows that the difference in welfare of σ
2(n−1)n

depends on the number of households connected to the microgrid and decreases as the market

grows. This is because strategic demand and allocative inefficiency vanish for a larger number

of households. Hence the proposed clearing mechanism increases welfare especially in small

markets. At the same time, this finding points to the benefits of interoperability for local

energy markets and shows that investing in converters or rectifiers to connect AC and DC

standards always increases welfare, if the costs of connecting markets are sufficiently low. As

a consequence, where small markets cannot be integrated into a larger power system, market

design and clearing rules become essential to the efficient provision of locally generated

energy.

V. Conclusion

The provision of electricity is increasingly organized in local energy markets. In this article,

we provide a model to study pricing behavior, investment incentives, and welfare in local

energy markets.

We have derived a set of positive efficiency results. First, local energy markets can provide

electricity at competitive prices. Importantly, this result holds also for a small number of

participating households and despite strategic demand reduction. Furthermore, combining

generation and trading possibilities in local markets yields efficient investment incentives

so that market prices reflect the costs of investing in generating units. However, we show

that these positive efficiency results can deteriorate due to allocative inefficiency. This is,

households with large generation capacity that are selling energy to the market typically
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consume too much and “share” too little energy with the market. This effect results from

their efforts to increase market prices. In turn, households that are net-buyers will typically

consume too little energy as compared to their optimal consumption levels. Yet, allocative

inefficiency vanishes and welfare increases the larger markets become. This finding highlights

the value of interoperability so that connecting adjacent markets can increase overall welfare,

if costs of connecting markets are sufficiently low.

To mitigate strategic behavior, we have proposed a clearing mechanism that includes

energy payments and network tariffs. We have shown that this mechanism can avoid strategic

demand reduction and restore first-best welfare in local energy markets. We believe this

mechanism is applicable, as it merely requires knowledge by the microgrid operator on the

number of participating households, their size and basic preferences, but does not require

the microgrid operator to know the exact demand realization of each household at any given

point in time.

In sum, the results of this article point to the efficiency of local energy markets, and

underscore the importance of market design and payment mechanisms to make households

benefit from the shift towards generation and trading in local energy markets.
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Appendix

A Equilibrium demand functions

A.I. Derivation of the optimality condition

Integrating (5) by parts yields

EUi =

∫ p

p

[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))] dHi(p,Xi(p, εi))

= [Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))]Hi(p,Xi(p, εi))|pp

−
∫ p

p

d

dp
[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))]Hi(p,Xi(p, εi))dp.

Because Hi(p) = 0 and Hi(p̄) = 1 we obtain

EUi = Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))

−
∫ p

p

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p, εi) + qi −Xi(p, εi)

]
Hi(p,Xi(p, εi))dp.

Therefore households maximize

max
Xi(p,εi)

[
Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))−

∫ p

p

L(p,Xi(p, εi), X
′
i(p))dp

]

with

L(p,X(p), X ′i(p)) :=

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p) + qi −Xi(p, εi)

]
Hi(p,Xi(p, εi)).
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With free salvage value (Kamien and Schwartz, 2012), the first order condition for an un-

specified Xi(p, εi) becomes
d

dp
LX′ = LX

with (
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
− LX′ = 0 for p = p.

Computing the derivatives yields

LX′ =

(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
Hi(p,Xi(p, εi))

LX = HXi

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p, εi) + qi −Xi(p, εi)

]
+

[
∂2Ui(Xi(p, εi), εi)

∂X2
i

X ′i(p, εi)− 1

]
Hi(p,Xi(p, εi))

and

d

dp
LX′ = (Hp(p,Xi(p, εi)) +HXi

(p,Xi(p, εi))X
′
i(p, εi))

(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)

+

(
∂2Ui(Xi(p, εi), εi)

∂X2
i

X ′i(p)− 1

)
Hi(p,Xi(p, εi)).

Using the above and rearranging d
dp
LX′ = LX yields equation (6) in the main text

∂Ui(Xi(p, εi), εi)

∂Xi

− p = (qi −Xi(p, εi))
HXi

(p,Xi(p, εi))

Hp(p,Xi(p, εi))
.

Last, for p = p it must hold that(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
− LX′ =

(
∂Ui(Xi(p̄, εi), εi)

∂Xi

− p
)
−
(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)

= 0.
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A.II. Solving for linear strategies

First, to obtain the derivatives of the price distribution HXi
and Hp, use the demand function

Xi(p, εi) = αi + βiεi − γip and rearrange equation (4) in the main text as

Hi(p,Xi(p)) = Pr (p∗ ≤ p | Xi)

= Pr

(
n∑
j 6=i

Xj(p, εj) +Xi ≤
n∑
i

qi

∣∣∣∣ Xi

)

= Pr

(
n∑
j 6=i

(αj + βjεj − γjp) +Xi ≤
n∑
i

qi

∣∣∣∣ Xi

)

= Pr

(
n∑
j 6=i

βjεj ≤
n∑
i

qi −
n∑
j 6=i

(αj − γjp)−Xi

∣∣∣∣ Xi

)
.

Let F be the distribution function of
∑n

j 6=i βjεj with density F ′. Differentiating with respect

to Xi yields

∂

∂Xi

F

(
n∑
j 6=i

βjεj ≤
n∑
i

qi −
n∑
j 6=i

(αj − γjp)−Xi

)
= F ′(·) ∂

∂Xi

(
n∑
i

qi −
n∑
j 6=i

(αj − γjp)−Xi

)
= −F ′(·)

and differentiating with respect to p gives

∂

∂p
F

(
n∑
j 6=i

βjεj ≤
n∑
i

qi −
n∑
j 6=i

(αj − γjp)−Xi

)
= F ′(·) ∂

∂p

(
n∑
i

qi −
n∑
j 6=i

(αj − γjp)−Xi

)

= F ′(·)
n∑
j 6=i

γj.

Finally, we have
HXi

Hp

=
−1∑n
j 6=i γj

.

When using the above for the optimality condition in equation (6), we obtain equation (9)

in the main text:

θi + εi − p− (αi + βiεi − γip) +
1∑n
j 6=i γj

(qi − (αi + βiεi − γip)) = 0.
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Applying coefficient matching to solve the first order condition yields

0 = εi − εiβi −
εiβi∑n
j 6=i γj

0 = −p+ pγi +
pγi∑n
j 6=i γj

0 = −αi + θi +
qi − αi∑n
j 6=i γj

.

with solutions as in Lemma 1. The solution for n < 3 is trivial with αi = qi and βi = γi = 0.

To see this solution, multiply both sides of the optimality condition by
∑n

j 6=i γj and plug in

(αi, βi, γi) = (qi, 0, 0). For n < 3, this is the only equilibrium candidate that survives. In

this equilibrium, all trade breaks down and each household consumes its own production. In

this case the stand-alone utility of household i is straightforward to calculate as

EUi =

∫ εo

−εo

[
(θi + εi)qi −

1

2
q2
i

]
f(εi)dεi − psqi = θiqi −

1

2
q2
i − psqi

which is maximized at q∗i = θi − ps, providing utility of 1
2
(θi − ps)2.

Last, we show that only symmetric strategies exist for all positive γi. We proceed by

induction arguments. Consider two households i and j, plus the remaining n− 2 households

with (ex-ante possibly distinct) γk. From the derivation of bidding strategies we know that

γi =
∑n

j 6=i γj

1+
∑n

j 6=i γj
. Hence, we can write the optimality conditions for households i and j in

equation (11) as

0 = γi −
γj +

∑n
k 6=i,j γk

1 + γj +
∑n

k 6=i,j γk

0 = γj −
γi +

∑n
k 6=i,j γk

1 + γi +
∑n

k 6=i,j γk

and solve for γi and γj. The only solution with positive γi is γi = γj. Hence s = 2 households

(i and j) exist with symmetric strategies γi = γj. Now taking one additional household l

out of
∑n

k γk with k 6= i, j we can write

0 = γi −
(s− 1)γi + γl +

∑n
k 6=i,j,l γk

1 + (s− 1)γi + γl +
∑n

k 6=i,j,l γk

0 = γl −
sγi +

∑n
k 6=i,j,l γk

1 + sγi +
∑n

k 6=i,j,l γk
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with s = 2. We again solve for γi and γl and again find only one solution with positive

parameters, which is the symmetric solution. Continuing with γi = γj = γl and s = 3 yields

one additional symmetric household. Continue until s = n − 1 for which all households’ γi

are symmetric.

A.III. Existence of linear equilibria

The first order condition for household i can be written as

∂Ui(Xi(p, εi), εi)

∂Xi

− p = (qi −Xi(p, εi))
−1∑n
j 6=i γj

.

Substituting in the utility function, writing
∑n

j 6=i γj =: Γ−i, and rearranging yields

Xi(p) =
qi + Γ−i(ε− p+ θi)

1 + Γ−i
.

Note that the above condition must hold for any price level p. The corresponding derivative

with respect to p,

X ′i(p) = − Γ−i
1 + Γ−i

,

is linear. Therefore, the best reply of household i to linear strategies of all other households

j 6= i is to likewise play a linear strategy.

For the proof of sufficiency, use again the functional from Appendix A.I.:∫ p

p

L(p,Xi(p), X
′
i(p))dp =

∫ p

p

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p) + qi −Xi(p, εi)

]
Hi(p,Xi(p, εi))dp.

Considering any η(p), the second order Taylor expansion of
∫ p
p
L(p,Xi(p) + αη(p), X ′i(p) +

αη′(p))dp with respect to α can be written as (see Liberzon (2011) section 2.6.1):∫ p

p

[
P(p)η(p)2 +Q(p)(η(p))2

]
dp

with P(p) :=
1

2
LX′

i(p)X
′
i(p)

(p,Xi(p), X
′
i(p))

and Q(p) :=
1

2

(
LXi(p)Xi(p) −

d

dp
LXi(p)X′

i(p)

)
Because L(p,Xi(p), X

′
i(p)) is linear in X ′i(p) we have P(p) = 0. Furthermore, Q(p) can be
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rewritten to

−HXi
−HpUXiXi

(Xi(p), εi) + (q −Xi(p))HXiXi
+ (p− UXi

(Xi(p), ε))HpXi
.

Next, recalling from Appendix A.I. that HXi
= −F ′(·) and Hp = F ′(·)

∑n
j 6=i γj, and because

utility is quadratic in Xi(p) so that UXiXi
(Xi(p), εi) = −1, the first two terms simplify to

F ′(·) + F ′(·)
n∑
j 6=i

γj > 0.

Similarly, the remaining two terms can be rewritten to

∂F ′(·)
∂Xi

(
(q −Xi(p))− (p− UXi

(Xi(p), ε))
n∑
j 6=i

γj

)
= 0,

which follows when substituting UXi
(Xi(p), ε)) = θi + εi −Xi(p) and using the equilibrium

demand curve Xi(p) from equation (12). Hence, the second variation is positive and the

second order conditions are satisfied, implying a maximum in utility. To see this, recall that

households solve

max
Xi(p)

[
Ui (Xi(p), εi) + p(qi −Xi(p))−

∫ p

p

L(p,Xi(p), X
′
i(p))dp

]
.

B Equilibrium investment

B.I. Investment with strategic demand

Starting from expected utility

E[EUi] =

∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

[Ui(Xi(p
∗), εi) + p∗(qi −Xi(p

∗))] gi(Ψi)dΨif(εi)dεi − psqi
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we take the first order condition and arrive at

∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

2(n− 1)(θi + εi − qi) + (n− 2)
(∑n

j 6=i θj + Ψi −
∑n

j 6=i qj

)
n(n− 1)

 gi(Ψi)dΨif(εi)dεi = ps

We then solve the inner integral by parts using that G(−(n − 1)εo) = 0 and G((n −
1)εo) = 1. Further, we use that for a symmetric PDF gi with a mean of zero, the anti-

derivative of its CDF, G(Ψi) =
∫
G(Ψi)dΨi, evaluated at the bound of the support yields

G((n−1)εo) =
∫ (n−1)εo
−(n−1)εo

G(Ψi)dΨi = ΨiG(Ψi)|(n−1)εo
−(n−1)εo

−
∫ (n−1)εo
−(n−1)εo

Ψig(Ψi)dΨi = (n−1)εo and

G(−(n − 1)εo) = 0. Using a corresponding procedure for the outer integral yields equation

(16) in the main text.

B.II. Investment with truthful demand

Substituting the true demand curve Xi(p, εi) = θi + εi − p into expected utility in equation

(15), taking expectations, and differentiating with respect to investment leads to

∂E[EUi]

∂qi
=

1

n

[
n∑
j 6=i

qj + qi −
n∑
j 6=i

θj − θi

]
− ps

which also implies
n∑
j 6=i

qj =
n∑
j 6=i

θj − (n− 1)ps ⇐⇒ qi = θi − ps.
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