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Abstract

In empirical analyses with large datasets and endogenous regressors, the choice of

instruments becomes essential to estimate the effect of interest. We explore the use of

machine learning tools to select among potential instruments and to improve inference

in two-stage IV estimation. We focus on the canonical two-stage demand estima-

tion problem and rely on high-frequency data from double auctions, where we observe

submitted demand curves. Observing “true” demand curves allows us to infer how

accurately the proposed regularization-based IV methods approximate true elasticity.

We find that regularization in the first stage selects the most relevant instruments

and significantly improves inference in the second stage. We derive suggestions for

researchers using machine learning tools in IV models with many instruments.
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1 Introduction

Estimating demand elasticity is a classic problem in economics. However, researchers often

face difficulties in arriving at good estimates, either because of too much or too little data

or due to the necessity to find reasonable instruments. In the worst case, estimates become

unreliable and introduce bias in policy-relevant counterfactuals.

Instrumental variable (IV) estimation presents one of the key approaches to estimating

demand elasticity. The seminal literature on demand estimation using IV concentrates on

cases with scarce data, i.e., only a few available instruments and observations (Angrist and

Krueger, 2001). Recently, the increasing availability of large datasets with a high frequency

of observations has encouraged novel research in empirical economics and applications of IV,

with its own set of obstacles in handling large volumes of data.

In case of scarce data, researchers find it hard to identify the true effect of interest

because of potential bias in the local average treatment effect. In case of too much data,

researchers struggle to find the right instruments that are best suited to reduce bias. As

economies and marketplaces become increasingly computerized, market participants generate

vast amounts of data with many possible instrumental variable candidates. Paramount

examples are digitized marketplaces such as Amazon or Uber, which have gained growing

attention for the estimation of demand and consumer surplus (Bajari et al., 2015; Cohen

et al., 2016).

In this article, we study the usefulness of machine learning approaches for demand esti-

mation in high dimensional, high-frequency settings. We make use of the seminal two-stage

IV model and estimate demand elasticity from equilibrium prices, quantities, and numerous

supply shifters. As well known, bad instruments correlated with the error term can possibly

worsen the bias as compared to using ordinary least-squares (OLS). In large datasets, the

availability of many, possibly unfit, instruments increases the risk of misidentification and
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over-fitting, again introducing bias. This risk becomes even more prominent in cases with a

large number of instruments but a low amount of observations.

The statistics and machine learning literature has proposed a host of approaches to

guide the variable selection and estimation process for the problem at hand.1 While these

methods are originally designed for prediction, a growing literature explores their usefulness

for inferring of parameters of underlying statistical and economic models (Belloni et al., 2014;

Fessler and Kasy, 2019).

In our study, we apply machine learning techniques to the seminal IV demand estimation

problem and explore their usefulness for improving inference. In particular, we investigate

how first-stage regularization performs in selecting suitable instruments, and how this selec-

tion affects the second-stage estimates. Specifically, we focus on LASSO, RIDGE, and Post-

LASSO estimation (Hoerl and Kennard, 1970; Tibshirani, 1996) of the first-stage model. We

follow an applied perspective on settings with many instruments, in our case supply shifters,

and apply different IV model formulations to the canonical demand elasticity estimation

problem (e.g., Angrist et al., 2000).

Our data stem from computerized double auctions in wholesale electricity markets. This

dataset provides a rich test environment for our study as it entails revealed demand curves

submitted to the double auction. Observing demand curves, i.e., the object of interest,

enables us to compute the “true” underlying demand elasticity. This, in turn, allows us to

evaluate the different estimates from IV regression based on equilibrium prices, quantities,

and instrumental variables. Knowing the true elasticity furthermore allows us to infer how

well different IV models with and without machine learning approximate the true elasticity.

Our findings show that regularization in the first-stage significantly reduces bias and

mean squared error (MSE) of the estimator. This is, we find that in situations with many

1See, e.g., Varian (2014) and Athey (2018) for comprehensive reviews and implications for empirical
economics.
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instrument candidates for IV estimation, the application of regularization in the first stage

dominates standard two-stage models. As our results show, regularization is especially valu-

able under certain conditions. First, we find that regularization improves inference when

instruments are correlated or exhibit outliers. Second, we find that regularization is effective

in addressing the weak instrument problem in that it aids the instrument selection pro-

cess and avoids over-identification. It is commonly known that selecting the seemingly best

instrument requires economic reasoning and an understanding of the underlying economic

mechanism (Angrist and Krueger, 2001). Yet, using several instruments at once, even if

theoretically sensible, can introduce additional bias. In this regard, we find that combining

economic reasoning with machine learning-based instrument selection presents a data-driven

answer to this trade-off.

Our findings relate to several strands of research. First, we contribute to the emerging

literature on the estimation of demand and consumer surplus with large data and machine

learning tools (Bajari et al., 2015; Cohen et al., 2016). While Bajari et al. (2015) use machine

learning to predict the treatment effect of price promotions on demand, our approach instead

aims at improving the traditional IV demand estimation procedure. Although we conduct

our analysis within the demand estimation framework, we believe it is widely applicable to

a broader set of IV models with large datasets.

Second, we relate to the literature on parameter estimation in sparse settings. While

researchers typically apply regularization to settings with a large number of variables but

low amount of observations (Belloni et al., 2012; Carrasco, 2012), we show that even in cases

with a lower amount of instruments and a higher amount of observations, regularization

techniques still provide better estimates.

Third, we relate to the long-lasting literature on demand estimation, which has been

applied to a variety of problems and settings, in particular in the field of industrial organi-

zation (e.g., Genesove and Mullin, 1998; Berry et al., 1995). More specifically, as our data
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stems from power markets, we relate to the literature on the estimation of demand elasticity

in energy markets (Baumeister and Peersman, 2013; Kilian and Murphy, 2014; Coglianese

et al., 2017) and in particular electricity markets (Lijesen, 2007; Bönte et al., 2015; Boogen

et al., 2017), where estimating elasticity has become of high interest for policy evaluation

(e.g., Aigner et al., 1994; Aubin et al., 1995; Fabra et al., 2021). As we show, adding machine

learning tools to the traditional two-stage IV design significantly improves estimates and, as

such, can also be widely used for studying policy counterfactuals that require information

on the demand side.

Last and more broadly, we add to the growing literature at the intersection between

applied economics and econometrics on the use of machine learning for causal inference.

In a recent paper, Abadie and Kasy (2019) show that data-driven regularization yields

estimates that are close to estimators obtained for optimal levels of regularization. We

draw from this idea but apply regularization to select among many instruments within a

two-stage IV setting, which has previously been studied in Okui (2011) and Belloni et al.

(2012). Similar works develop methods for high-dimensional instrumental variable settings,

including Zou (2006), Belloni et al. (2014), and Carrasco and Tchuente (2015). These works

mostly concentrate on the derivation of asymptotic properties of the estimators. Our focus

is on the application of these methods and the investigation of how these estimators perform

“in the field”.

The remainder is organized as follows. Section 2 introduces our theoretical model, no-

tation, and our empirical strategy. Section 3 describes the dataset. Section 4 presents our

findings and results. Section 5 concludes.
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2 Model and empirical strategy

This section first outlines a brief market model. We then illustrate how we use the model to

measure and estimate demand elasticity. Our setup and notation draw from Angrist et al.

(2000), whose setting we amend by adding regularization techniques.

Consider a set of n competitive markets in which buyers and sellers exchange a perfectly

homogeneous good.2 Each single market i = 1, . . . , n is subject to supply shocks from k

supply shifters that we denote as zj with j = 1, ..., k. We write the set of all supply shifters

as Z = [z1, . . . , zk]. The market supply function hence depends on the realization of Z

and can be written as Si(p, Z). In equilibrium, realized supply and demand determine a

market-clearing price-quantity pair {p∗i (Z), q∗i (p
∗
i (Z))}.

We denote the demand function in market i as Qi(p). Furthermore, we assume that

demand is stochastic and has a zero mean random component so that Qi(p) = Qi(p, ξ) with

E[ξ|p] = 0. The error term ξ may contain any perturbations due to unobserved consumer

behavior in market i.

As the good is traded over n markets, we measure demand elasticity, denoted by ε, as

the average elasticity over all n markets, formally,

ε =
1

n

n∑
i=1

∂E[Qi(p, ξ)]

∂p

p

Qi

=
1

n

n∑
i=1

εi, (1)

where εi is the elasticity in market i. The average demand elasticity defined in equation (1)

is the object of interest that we seek to estimate.

If the realization of the demand curve in market i is observable, say as submitted demand

curve in a double auction, we can estimate (1) from data on Qi and p, e.g., by fitting a log-log

specification around the observed demand curve Qi(p). Typically, researchers however do

2An alternative interpretation to having n markets that trade homogeneous goods is that the same market
clears n times. In our empirical application, markets clear hourly, implying that each market i ∈ [1, ..., n]
represents one hour of a particular day.
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not observe demand curves. In this case, empirical specifications have to rely on observed

equilibrium price-quantity pairs {p∗i (Z), q∗i (p
∗
i (Z))} and instruments (supply shifters), Z, to

approximate the true demand elasticity.

2.1 Estimating true demand from bid curves

To estimate “true” underlying elasticities from observed demand curves, we start from equa-

tion (1) and assume that demand is iso-elastic. Then, the demand function can be written

as

Qi = αip
εi . (2)

Note that in our setting, market i refers to a specific market clearing in hour i. The demand

elasticity in hour i is then directly estimable by using data points along the revealed aggregate

demand curve and applying a logarithmic specification

log(Qi) = log(α) + εilog(p) + ξ, (3)

where εi is a point estimate of the elasticity in market i as in equation (1). In essence,

the above fits an iso-elastic curve around the observed demand function in market i. We

apply equation (3) to all hours i = 1, ..., n in our sample, compute the underlying demand

elasticities, and calculate the corresponding average elasticity as shown in equation (1). As

this estimate is obtained directly from using demand curve data, we refer to this estimate

as “true” elasticity and denote it by εtrue henceforth. Similarly, we use εtruei to refer to the

true elasticity for one market i.
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2.2 IV Estimation

In most applied cases, demand curves Qi(p) are unobservable. The frequently used approach,

in this case, is to apply the two-stage least squares (2SLS) estimator and first approximate

the observed equilibrium price, p∗i , given instruments that typically represent exogenous

shifts in market supply. Using a log-log specification,

log(p∗i ) = log(δ) + log(Z)π +Xγ + η, (4)

where π and γ are first-stage coefficients, δ is an intercept, Z are supply shifters that cause

exogenous shocks to the equilibrium price, p∗i , X = [x1, . . . , xm] represents further controls,

and η is the first-stage error term. In our application below, the matrix X comprises hourly,

daily, weekly and monthly dummies.3 As standard, instruments are assumed to be relevant

and independent, i.e., each supply shifter zj ∈ Z is uncorrelated with the second-stage error

term, but correlated with the equilibrium price.

Importantly, the fitted values p̃∗i depend on the choice of instruments Z and the choice

of weights π. Below, we employ machine learning methods to estimate (4) and study how

they affect the fitted values p̃∗i and, in turn, the elasticity as approximated by the second

stage equation

q∗i = α + p∗i ε
∗ +Xβ + ξ, (5)

where β represents coefficients of all exogenous control variables in X that capture observable

heterogeneity other than price. Using this 2SLS approach based on data on equilibrium

price-quantity pairs, the estimate for the demand elasticity is then represented by ε∗.

3Note that for ease of notation we use p∗ and q∗ to denote both, the theoretical equilibrium price-quantity
tupels and the underlying data.
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2.3 Regularized IV Estimation

Instead of fitting equilibrium market prices as in equation (4), we apply different machine

learning techniques. First, we apply the L1 penalized estimator (LASSO) in the first stage,

which we denote as πL. To compute the latter, we solve

πL ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] +
λ

n
‖π‖1 , (6)

where λ is chosen such that the 10-fold cross-validated mean squared error is minimal. Note

that πL has k + m components, as we regress on both, k instruments and m exogenous

variables and controls X in the first stage.

Following the same notation, the L2 penalized first-stage estimator (RIDGE) is defined

as

πR ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] +
λ

n
‖π‖22 , (7)

where again the regularization intensity λ is chosen to minimize MSE using 10-fold cross-

validation.

Last, we construct the Post-LASSO estimator πPL by first performing a LASSO-penalty

regularization in the first stage and then taking all non-zero coefficients to estimate the

second stage equation using OLS,

πPL ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] : πj = 0 ∀ j : πLj = 0. (8)

The idea for this estimator is similar to Belloni et al. (2012), who also apply LASSO as a pre-

selection procedure. In all three models above, the regularization parameter λ, if positive,

introduces first-stage bias as compared to the standard 2SLS case with λ = 0. As λ increases,

so do the costs of large instrument coefficients when minimizing the sum of squared errors.

The above setup allows for obtaining several elasticity estimators ε∗ for the second-stage
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model. First, using fitted values for p∗i with λ = 0 yields the standard two-stage least squares

estimator, which we denote as ε∗2ls. In addition, we obtain three regularized IV estimators

when using fitted values from (6), (7), and (8), i.e., using LASSO, RIDGE or Post-LASSO

penalties. We denote the second-stage estimator based on a RIDGE first-stage as ε∗R, the

second-stage estimator based on LASSO regression as ε∗L, and the Post-LASSO second-stage

estimator as ε∗PL.

2.4 Comparing estimates

Finally, to make our various two-stage estimates comparable with those derived from aver-

aging the observed demand elasticities, we use samples that cover identical time spans. This

is, when we average true observed demand elasticities over a set of n markets, we apply the

corresponding n equilibrium prices, quantities, and instruments to our two-stage procedures.

To be able to compare our results for a range of different samples, we furthermore partition

our data in different sub-samples ω, where each sub-sample ω contains nω observations. For

each sub-sample ω, we thus obtain different two-stage estimators ε∗ω and one true elasticity

εtrueω by averaging observed elasticities.

Hence, when looking at, say, the weekly average elasticity, the sample ω consists of all

hours belonging to a given calendar week. For example, we fit iso-elastic demand curves for

each hour of every calendar week 20 in the sample and obtain εtrueω for this particular calendar

week. Subsequently, we use all hourly price-quantity pairs and instruments from the same

calendar week 20 and obtain the corresponding IV estimates. This procedure guarantees

that we compare estimators obtained from identical samples, but over a range of different

samples. Our main analysis is performed at the weekly level. For additional tests, we also

pool markets at the hourly level and, e.g., compute elasticities for all hours from 8 am to 9

am of a given year.

In sum, our empirical approach works as follows. First, we estimate demand elastic-
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ity based on observed demand curves as in equation (1), which provides our benchmark

estimate for the true underlying elasticity. Next, we estimate elasticity using equilibrium

price-quantity pairs following the canonical IV approach as in equations (4) and (5), as well

as the regularized approach as in equations (6), (7), and (8). We then pool the observations

to construct identical samples and time spans for each estimator as described above and

compare estimates. The goal is to provide insights on the usefulness of the employed ma-

chine learning techniques for inference in the second stage of the model. We focus on bias,

variance, and mean squared error.

3 Data

For our empirical investigation, we exploit data from the European Power Exchange (EPEX).

The EPEX is the largest European power exchange and clears, amongst other commodities,

day-ahead wholesale markets for electricity in several European countries. More specifically,

we employ EPEX data from the German day-ahead electricity market.

We make use of this rich power market data for several reasons. First, electricity is a

homogeneous good and allows us to abstract from competing differentiated products. Second,

our setup offers a well-defined test environment for demand estimation, because aggregate

demand functions, and hence true underlying demand elasticities, are directly observable in

the data. We therefore can benchmark estimated elasticities against observed demand curves.

Third, we observe the equilibrium price-quantity pairs at hourly granularity, which allows for

computing two-stage IV estimates with a large number of observations. Finally, there exist

data on several plausible instruments, e.g., we observe weather-dependent generation from

wind and solar sources in the German market. Wind and solar energy act as supply shifters

and increase overall market supply for high wind speed and high solar radiation levels, while

market supply is significantly lower at times of little wind and solar output.
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Market clearing in the German day-ahead power market is organized as a sealed bid

double auction, that determines a market-clearing price for every delivery hour of the con-

secutive day. To do so, the exchange matches submitted supply and demand schedules for

any hour of the following day, and announces the corresponding hourly equilibrium prices

and quantities. Our main data comprise the aggregated hourly market demand curves, in-

cluding the corresponding equilibrium market prices and quantities. We collect these hourly

data for a period of ten years from 2011 to 2020.

In addition to the submitted demand curves, equilibrium prices, and quantities, our setup

also requires a range of instruments. The instruments that we use are solar and wind output

forecasts which are again available in hourly resolution. Because solar and wind output have

marginal costs close to zero, both constitute exogenous supply shifters. Finally, we merge

in data on daily input prices for natural gas, coal, and prices for CO2 allowances. All latter

are inputs to producing electricity and can be considered as exogenous. In total, we hence

make use of k = 5 first-stage instruments.

Because we use solar output as an instrument, we restrict our sample to 12 daytime hours

between 8 am and 8 pm .4 We also exclude weekend hours that typically follow different

demand patterns. Table 1 presents summary statistics for our main variables. As shown,

the data entail 31,308 hourly observations on clearing prices and quantities.5 Rows three

and four of Table 1 show statistics for solar and wind output. Last, Table 1 shows costs

of thermal generation and carbon prices, which are at the daily level and amount to 2,870

observations.

4We note that our results remain robust regardless of this choice. In particular, leaving out solar feed-in
as an instrument and considering hours during the night yields similar results.

5There are no missing values for prices and quantities so that the number of observations covers all peak
hours during working days from January 1, 2011, up to December 31, 2020. Further, note that because
power is costly to store, power prices can be negative in case of oversupply. We work with logged variables
and keep negative prices in the sample by transforming prices with the function sign(p)log(1 + |p|). This
transformation also significantly improves the fit as compared to leaving negative prices out of the logged
sample. Our results on the performance of each estimator remain unchanged when deleting negative prices
from the sample instead.
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Table 1: Summary statistics

Mean St. Dev. Min Max Obs.

Price (EUR/MWh) 45.22 16.19 -83.94 210.00 31,308

Quantity (GW) 30.25 5.09 16.84 51.47 31,308

Wind output (GW) 9.07 8.23 0.22 47.09 31,212

Solar output (GW) 7.47 7.09 0 32.48 30,960

Gas price (EUR/MWh) 19.37 5.69 3.63 29.35 2,870

Coal price (EUR/metric ton) 9.07 2.07 5.08 14.41 2,870

CO2 price (EUR/metric ton) 11.60 7.82 2.75 33.44 2,870

Notes: Prices and quantities are for day-ahead electricity at the German market, traded at EPEX.
Gas prices are day-ahead prices for the TTF hub. Coal prices are for imported coal to Europe
(API2-CIF), CO2 prices are from the ICE exchange. We observe gas, coal and CO2 prices in daily
resolution.

While Table 1 summarizes the data that we use for our two-stage IV estimations, Figure

1 depicts representative demand curves that we use to compare our elasticity estimates

against. Specifically, Figure 1 shows four hourly demand curves from our sample, along with

their corresponding “true” elasticity estimate εtruei as estimated by equation (3). As can be

seen, the assumption of iso-elastic demand fits the data well. Across all ten years of our

sample, we find an average demand elasticity of -0.198. This estimate is in line with extant

literature on demand elasticity in the energy market (e.g., Lijesen, 2007). We also find that

the step-wise demand functions are well-approximated by an iso-elastic fit with an average

squared approximation error of 2.24% within our sample.6

6Note that market participants can announce demand for prices between -500 and 3000 EUR/MWh,
while Figure 1 plots demand curves for the typical range of market prices, which is far narrower. To avoid
fitting demand curves for prices way out of sample, we estimate the true elasticities only within the range
of observed clearing prices. Appendix 5 presents this approach in more detail.
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Figure 1: Submitted demand curves (quantity in thousands of MW over price in EUR/MWh) and elasticity
εtruei . Part (a) of this figure shows the observed demand curve for the hour 9-10am on September 1st, 2016.
The dashed line shows the fitted iso-elastic demand curve with elasticity εtruei that we obtain when estimating
the log-log specification in Equation (3). Parts (b), (c), and (d) show demand curves and corresponding
log-log fits for three further representative hours.

4 Results

We compare and report the performance of estimators based on the bias, variance, and MSE.

Specifically, for each sub-sample ω, we define and compute the sample analogs of bias, MSE,

and standard deviation as

Bias(ε∗ω) = εtrueω − ε∗ω, (9)

MSE(ε∗ω) =
∑
i

[(εω − εtrueω )2], (10)
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σ(ε∗ω) =

√∑
i(εω − εtrueω )2

nω
, (11)

where nω denotes the total number of market clearing hours i in sub-sample ω. In addition,

we investigate how the regularized methods choose instrument weights and which instrument

coefficients are set to zero by the LASSO estimator.

We start by presenting results for estimating demand at the weekly level. This is, we

pool hourly market results for each of the 52 calendar weeks over the entire time span of the

dataset. For each of these weekly samples, we then estimate εtrueω and {ε∗2ls,R,L,PL}. As we

have ten years of data, the estimates are hence based on ten weeks of data for each sample.
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Figure 2: Bias of two-stage estimators (2SLS, RIDGE, LASSO, Post-LASSO). This figure shows the bias of
each estimator for each of the 52 calendar weeks. The bias is shown relative to the true demand elasticity for
the respective week. Note that we plot the bias as stated in equation (9), but swap the estimated elasticity
and the true elasticity. This allows for a more natural interpretation of the plot, as positive values represent
an overestimation while negative ones represent an underestimation.

Figure 2 displays the bias over all calendar weeks for all considered estimators. As shown,

the bias reduces considerably, and estimates vary much less for the regularized first-stage

models. In particular, the relative over-performance of regularized estimators is especially

pronounced from around week 10 to week 40. This is due to several reasons. First, the high
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variance of solar energy during summertime often leads to relatively large outliers. Second,

we find that fuel prices exhibit outliers during the first part of the year surrounding week 10.

Overall, this leads to poorer estimates for the two-stage least squares procedure, while all

regularized estimators are adjusting instrument coefficients accordingly and, in turn, depict

more accurate point estimates.7 As a result, all three of the regularized estimators show

lower bias and return more stable results.

Furthermore, we find that the lower bias of regularized IV estimators relates to the

collinearity of instruments. Indeed, we compute simple variance inflation factors (VIF) of

up to 8 in our instruments data, showing clear signs of high collinearity. In particular,

collinearity is relevant for the fuel prices among our set of instruments, which are typically

highly correlated. We believe this contributes to the performance of the regularized estima-

tors, as shown in Figure 2, since collinearity is more pronounced in those weeks when the

overperformance is higher.

To probe into results for the complete set of metrics for all considered estimators, Table

2 reports the mean bias, mean squared error, and variance of each estimator. As shown, over

all metrics, the estimation quality improves considerably for our regularized IV estimators,

and two-stage estimates based on LASSO perform best.

To investigate how the observed improvements are related to instrument selection, we look

into which instruments are being selected over time by the regularized estimators. In case

of LASSO and Post-LASSO, this can be done by screening for instruments with coefficients

of zero. We find that in our weekly models, the instruments coal, gas, and CO2 prices are

set to zero in 6%, 20%, and 14% of cases, respectively, while wind and solar output remain

relevant instruments almost always. Taken together, we find that instrument selection is

relevant even for only five instruments, and that the improved inference especially is due to

7When applying Cook’s distance on the set of instruments, we find that, on average, around 3% of
observations are outliers.
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Table 2: Bias, mean squarer error, and variance of two-stage estimators over 52 weeks

Estimator Bias MSE Variance Observations

ε∗2ls 0.220 0.427 0.218 31,094

ε∗R 0.029 0.088 0.104 31,094

ε∗L 0.018 0.064 0.109 31,094

ε∗PL 0.030 0.087 0.108 31,094

Notes: Bias, Variance and MSE are computed as in equations (9), (10), and (11). To compute each
metric, we use 31,094 observations on true demand curves and estimated demand elasticities. The
difference in observations as compared to the data in Table 1 results from, first, missing demand
curves for some hours and, second, estimators that do not yield an elasticity estimate if too much
instrument data is missing.

exploiting the high-frequency variation in wind and solar output.

Furthermore, we find that the relevance of the instruments changes over time. During

our sample, wind and solar energy show strong investment and market entry. We, therefore,

conjecture that the explanatory power of the forecasted renewable energy in-feed should

increase over time. Table 3 reports how often each instrument is selected in the first stage

over the years. We find that while wind feed-in is kept in all models, the role of solar feed-in

in explaining first-stage price variance is increasing over time. Also, the CO2 price gains

more explanatory power over time. In contrast, coal and gas prices become less relevant over

time.

In sum, the findings of this section show that using statistical learning in the first stage

significantly outperforms traditional two-stage estimators. Importantly, while regularization

is known to outperform unregularized estimators, particularly in cases of small numbers of

observations compared to the number of explanatory variables (Belloni et al., 2012), our

findings imply that these improvements hold even for a relatively small number of potential

instruments and high-frequency data with many observations. Furthermore, our results

above show that the benefits of selecting instruments in the first stage carry through to
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Table 3: Instrument relevance over time: percentage of models which use the corresponding instrument in
the first stage after LASSO-regularization.

Year Solar Wind Coal price Gas price CO2 price

2011 0.83 1.00 0.58 0.83 0.75

2012 0.92 1.00 0.83 0.83 0.83

2013 0.92 1.00 0.75 0.83 0.83

2014 0.92 1.00 0.50 0.91 0.58

2015 1.00 1.00 0.50 0.58 0.91

2016 1.00 1.00 0.66 0.41 0.58

2017 1.00 1.00 0.50 0.50 0.91

2018 0.92 1.00 0.50 0.66 0.91

2019 1.00 1.00 0.50 0.58 0.91

2020 1.00 1.00 0.50 0.58 0.91

Notes: For each year, we consider how many estimation models per month are using the correspond-
ing instrument variable after regularizing the first-stage and express this amount as percentage.

the second-stage estimate, which improves considerably in bias, variance, and mean squared

error.

4.1 Alternative samples

For robustness, we re-run our analysis by pooling the data by hours instead of weeks, and

again compare εtrueω and {ε∗2ls,R,L,PL} where each sample ω now contains all data from each

hour of the day, i.e., for each daytime hour from 8 am to 8 pm. Hence, we obtain different

estimators for 12 different samples, where each sample collects all data for one particular

hour of the day during our 10-year sample.

Figure 3 shows the results and displays the difference between the true elasticity and

our estimates based on price-quantity pairs. Again we find that the traditional IV approach

performs worst as compared to all regularized estimators. The average bias of the 2SLS

estimator is around -0.095, while the average bias for the regularized estimators is between
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-0.041 and -0.043. Overall, Figure 3 corroborates our finding that regularized estimators

perform significantly better in estimating demand elasticities.
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Figure 3: Bias of two-stage estimators (2SLS, RIDGE, LASSO, Post-LASSO). This figure shows the bias
of each estimator for each of the 12 peak hours. The bias is shown relative to the true demand elasticity for
the respective hour.

4.2 Sensitivity of shrinkage levels

In closing, we discuss the sensitivity of our results with respect to the level of regularization.

We find that the performance of regularized estimators can drop significantly when the level

of applied shrinkage becomes too high. Without the possibility to benchmark against true

elasticities in the second stage, the task of choosing the shrinkage level becomes non-trivial.

Indeed, we find that the standard 10-fold cross-validation with respect to the first-stage

MSE as implemented in most statistical packages yields too high regularization levels in

about 20% of the cases. As a result, in these cases relaxing the level of shrinkage yielded

a better second-stage estimate. Our results therefore stress that all regularized estimators

outperform the two-stage least squares approach even for below optimal shrinkage.
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5 Conclusion

The increasing availability of large datasets has led to the growing prominence of statistical

learning methods in empirical economics. While these methods have originally been devel-

oped to improve out-of-sample prediction and MSE, they are increasingly used to improve

inference.

In this article, we make use of a unique empirical setting to explore the usefulness of

statistical learning methods for instrumental variable estimation. We apply regularization

techniques, i.e., LASSO, RIDGE, and Post-LASSO to the canonical two-stage demand es-

timation problem and show that, with many instruments, regularization in the first stage

improves inference significantly. Our empirical approach makes use of observed demand

curves, allowing us to benchmark obtained estimators against true underlying demand elas-

ticities.

Using this empirical strategy, we derive a set of results on the properties of RIDGE,

LASSO, and Post-LASSO estimators. We find that bias, variance, and MSE of the second-

stage coefficients can be significantly reduced when employing regularization. We find that

the bias reduction property is more prominent, for higher variance, for a higher number of

outliers, and for higher collinearity of instruments.

In addition, we investigate how the level of shrinkage affects the results. We find that the

estimators are sensitive with regard to the selection of the shrinkage parameter. We argue

that ”over-shrinking” is a concern, as the quality of estimates can drop significantly when it

occurs. Yet, our results show that regularization outperforms traditional IV estimation for

a range of shrinkage levels.

In sum, our findings suggest that regularization methods offer measurable advantages for

IV estimation with large data and many instrument candidates, with LASSO-type regular-

ization performing best on our data.
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Appendix: Demand curve sampling

To avoid fitting demand out of the sample, we apply the log-log specification in equation

(3) only to the part of the demand curve between the minimum and the maximum observed

clearing price for the corresponding month. If a demand curve falls in, say, July, we only

estimate the elasticity for this curve for prices ranging between the minimum and maximum

price observed in July. Figure A.1 depicts a selected demand curve for the entire possible

price range and the relevant part of the demand that we use for our estimations.
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(b) Relevant part of the curve (depicted in panel (a) between the dashed red lines)

Figure A.1: Quantity (y-axis) over price (x-axis) of a complete demand curve for a representative hour
(panel a), along with a zoomed-in version of the relevant part of the curve (panel b). The demand curve is
for hour 10 of July 11th, 2019. The maximum equilibrium price in July was 74.06 EUR/MWh, while the
minimum price was 26.72 EUR/MWh.
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