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Abstract

We measure the ability of firms to play oligopoly games, and the consequences for

market efficiency and carbon emissions if firms lack strategic ability and deviate from

Nash-equilibrium outcomes. Making use of rich micro-level data from the Spanish

electricity market, we show that large incumbent firms approximately offer optimal

output and charge optimal prices. Smaller firms lack strategic ability and tend to

“price their production out of the market”. We show that this heterogeneity in strategic

ability deteriorates the efficiency of carbon pricing, because the allocation of carbon

abatement across firms is not optimal. We find that large and strategically able firms

with high shares of low-carbon generation are pivotal for efficient abatement and for

decreasing the sector’s carbon intensity. We compute counterfactual merger cases that

allow for higher carbon prices and decrease the sector’s carbon intensity, at no costs

for consumers.
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1 Introduction

Recent findings in the behavioral industrial organization literature suggest that differences

in firm characteristics can lead to heterogeneity in firms’ strategic sophistication, e.g., in

their ability to play oligopoly games (Hortaçsu et al., 2019). An immediate implication is

that, whenever firms deviate from expected equilibrium play, they can cause damage to the

intended market outcomes that policymakers aimed to achieve when imposing new regulation

and incentive mechanisms.

Carbon pricing is one of the most ubiquitous mechanisms that policymakers have put into

practice, with the goal to reduce carbon emissions at lowest cost. However, carbon-intensive

sectors are often dominated by large strategic companies, so the efficiency of carbon prices,

too, is subject to the ability of firms to adjust their output and pricing strategies accordingly.

In this paper, we ask how heterogeneity in strategic ability affects market efficiency

and, in particular, market externalities. We focus on electricity markets and investigate the

impact of strategic sophistication on firms’ optimal pricing decisions, their carbon-dioxide

(CO2) emissions, and the efficiency of CO2 abatement.

To study the effects of strategic ability on market externalities, we exploit rich firm-level

data from the Spanish electricity market. Electricity markets represent a great example for

large carbon-intensive sectors where strategic firms compete in oligopoly markets. Indeed,

scholars have provided a wealth of evidence for strategic equilibrium play in this sector (e.g.

Green and Newbery, 1992; Wolfram, 1999; Wolak, 2003; Reguant, 2014). The consequences

of —more or less strategic— firm behavior on market externalities have however received

little attention so far, although especially electricity markets are prone to significant CO2

externalities.

In efforts to decarbonize power generation, large power producers increasingly started to

add wind and solar energy to their production portfolio. Yet, other firms remain operating

conventional plants only, whereas small market entrants often rely exclusively on low-carbon

production from wind and solar assets. Furthermore, power generating companies often

differ in their size; and some operate specialized strategy departments that other firms lack.

This heterogeneity can lead to differences in firms’ ability to efficiently price and sell their

“clean or less clean” output to the market, with large consequences on market efficiency

and overall CO2 emissions. Prior research started exploring differences in strategic ability,

proposed ways to rationalize deviations from Nash equilibria, and found strong impact of

strategic sophistication on market efficiency (e.g. Hortaçsu and Puller, 2008; Hortaçsu et al.,

2019).
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The equilibrium framework we apply to measure firms’ strategic ability follows canonical

multi-unit auction models (Wilson, 1979; Klemperer and Meyer, 1989) that scholars have

refined to match electricity market environments (Green and Newbery, 1992). Nearly all

electricity wholesale markets operate as multi-unit uniform price auctions. To sell their

output, firms have to form expectations on overall market demand and on the aggressiveness

of their competitor’s bidding strategies. In practice, firms have to submit supply functions

to the market operator that specify their willingness to sell a certain amount of power at any

given price. In addition, electricity wholesale markets usually clear at high frequency, e.g., at

hourly granularity, so that firms have the possibility to learn from prior strategies. As such,

electricity markets present an ideal setting to study the impact of strategic sophistication

and strategic pricing on market externalities.

Deviations from optimal bidding strategies and their impact on market performance

have been investigated before. Wolfram (1999) compares prices in the UK electricity market

to theoretical oligopoly models and finds that prices were not as high as theory predicts,

attributing deviations, amongst others, to financial contracts between suppliers and their

customers. Hortaçsu and Puller (2008) use data on the Texas power market and show

that especially smaller firms deviate from optimal supply functions, and forgo significant

amounts of profit. Using a similar framework, Ciarreta and Espinosa (2010) focus on the

Spanish power market and show that firms do not exploit the full potential of their pricing

power. We draw from this approach to identify sub-optimal pricing in electricity markets,

and investigate implications of potential deviations on the sector’s CO2 emissions and the

carbon intensity of producers.

For our empirical setup, we exploit detailed supply and demand bids in the Spanish

wholesale market for electricity, which has been extensively researched to show how electricity

generating firms formulate bidding strategies (Reguant, 2014; Fabra and Reguant, 2014; Ito

and Reguant, 2016). Given that we observe each firm’s biddding strategy, i.e., their supply

functions, we can compare the observed supply to counterfactual optimal supply schedules

to assess each firm’s strategic ability.

As we seek to understand the impact of strategic pricing on CO2 emissions, we focus on

all companies that hold fossil fueled power plants in their portfolio. We therefore investigate

the strategies of eight relatively large companies, which together own all fossil production

capacity and are responsible for the bulk of CO2 emissions in the Spanish market. When

computing optimal supply functions and “optimal” counterfactual CO2 emissions, we also

account for the forward positions of each firm. As indicated by Wolfram (1999) and shown
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in Wolak (2003), Mansur (2007), and Bushnell et al. (2008), forward commitments change

optimal bidding strategies. As we do not observe firms’ forward positions, we follow common

approaches to first infer forward positions from the data (Hortaçsu and Puller, 2008; Reguant,

2014; Brown and Eckert, 2021).

Our results show that market participants, irrespective of their size, submit supply sched-

ules which are steeper than the profit maximizing supply schedules. This is, firms’ supply

functions should be more aggressive to maximize profit. However, this effect is more pro-

nounced for smaller firms. This finding confirms earlier results in Hortaçsu and Puller (2008)

and Hortaçsu et al. (2019). The excessively steep supply schedules lead to higher prices than

profit maximizing behavior would suggest and, given elastic demand, less electricity sold in

the market.

Our counterfactual optimal supply functions therefore predominantly lead to higher out-

put and consequently higher carbon emissions. In short, our findings suggest that the lack of

strategic sophistication favors conservation and reduces CO2 emissions, although abatement

is not strategic and not optimal. We also observe that the composition of a firm’s produc-

tion portfolio moderates this effect. Deviations from relatively cleaner firms can lead to an

overall increase in emissions. This is because firms tend to submit too steep supply func-

tions and, when having low-carbon supply, price their clean output out of the market. As a

consequence, when relatively clean firms lack sophistication, overall market emission levels

rise. Our findings hence show that, from a policy perspective, firms with clean production

that lack strategic ability can be costly in terms of externalities.

To compute policy counterfactuals that can increase strategic sophistication, we estimate

the impact of a merger between a sophisticated large firm and a less sophisticated but

relatively “clean” firm. We assume that the merged company adopts the bidding behavior of

the more sophisticated firm. First, our findings suggest that mergers between heterogeneous

firms may have a pro-competitive effect. This is because sophistication increases and pricing

becomes more aggressive. Second, we find that this increase in efficiency does not come

at a significant cost of increased emissions. This is because the merger led the small but

clean firm to more efficiently price its low-carbon output in the market, hence decreasing the

overall CO2 intensity. This finding suggests that there are benefits to merger policy when

accounting for firms’ strategic abilities and the consequences on the utilization of low-carbon

production.

Our findings contribute to the large literature on bidding behavior in multi-unit auctions

(Wilson, 1979; Klemperer and Meyer, 1989) and, in particular, in electricity markets. The
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literature on bidding behavior in electricity markets has been mostly confined to understand-

ing the impact of strategic bidding on market efficiency (Green and Newbery, 1992; von der

Fehr and Harbord, 1993; Wolfram, 1999; Borenstein et al., 2002; Baldick et al., 2004), with

less emphasis on how bidding behavior impacts CO2 externalities. Previous works have in-

stead focused on the impact of cost pass-through (Fabra and Reguant, 2014), complex cost

structures (Reguant, 2014), discrete bids (Fabra et al., 2006; Holmberg et al., 2013), arbi-

trage in sequential markets (Ito and Reguant, 2016), and the impact of forward contracts

(Wolak, 2003; Mansur, 2007; Bushnell et al., 2008).

More broadly, we also contribute to the growing field of behavioral industrial organiza-

tion, in particular on firm behavior in auction markets. Previous works in this field have

embedded cognitive hierarchy models into oligopoly pricing frameworks (Hortaçsu et al.,

2019), and studied the role of learning for converging towards Nash-equilibrium bidding

(Doraszelski et al., 2018). In line with our study, both latter works exploit rich firm level

data from electricity markets. We add to this literature by quantifying the impact of strategic

sophistication on market externalities.

The remainder of this paper is organized as follows. In section 2, we provide an overview

of the market environment and introduce our empirical setup. In section 3, we present our

model framework. Section 4 outlines how we proceed empirically, while section 5 illustrates

our data. In 6, we present our results and robustness checks, and compute policy counter-

factuals. Section 7 concludes.

2 Market environment and empirical setup

Our empirical setup exploits rich firm level data from the Iberian electricity market. The

Iberian electricity market, Mercado Ibrico de la Electricidad (MIBEL), is the main market

place for electricity in Spain and Portugal.1 Market participants can trade on several con-

secutive markets. The centralized wholesale market is organized by OMI-Polo español S.A.

(OMIE) and includes a day-ahead market place, six intraday markets, as well as a contin-

uous intraday market for last-minute adjustments prior to delivery. Before the centralized

wholesale markets clear, market actors can engage in bilateral or exchange-based forward

trading.

1The formerly distinct Spanish and Portuguese markets were officially coupled in July 2007 and form one
pricing zone. Market prices in both countries only differ when transmission capacity does not allow for the
electricity flows as determined by the market.
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2.1 The day-ahead market

Our empirical analysis focuses on the day-ahead market, where the bulk of electricity is

traded. The market opens at 12 a.m. on the day prior to delivery and clears simultaneously

for all 24 hours of the consecutive delivery day. The regulator obliges suppliers to submit

bids for all of their available capacity. To give suppliers more opportunity to smoothen their

supply schedules, they can submit up to 25 distinct bids of price quantity combinations per

production unit. In addition to these simple bids, that reflect a firm’s willingness to sell

electricity at or above this bid, suppliers can make use of complex bids. Firms use complex

bids to flag additional cost components for the auction clearing mechanism, such as start-up

or ramping costs of power plants. If a supplier makes use of a complex bid (usually in the

form of a minimum income condition or a condition on indivisibility), the production unit

is only called if the condition stated in the complex bid is met. If the condition is not met,

the clearing process neglects all bids submitted for this production unit.

On the demand side, bids can be submitted by retail firms, vertically integrated genera-

tion companies, or large consumers who directly participate in the wholesale market. Both

supply and demand bids are submitted to the market operator (OMIE), where bids are

sorted in increasing (supply-side) and decreasing order (demand-side). After controlling for

complex bids, the market clears as a uniform price auction, where the last supply bid needed

to satisfy demand determines the market clearing price. This price consequently applies for

all the electricity bought and sold in the market at that particular hour.

2.2 Market structure

The wholesale market structure is characterized by few large firms and several fringe firms.

Fringe firms mainly are small renewable producers. The dominant large Spanish companies

in our sample are Endesa, Iberdrola, and Naturgy, who control the majority of fossil, nuclear,

and large-scale hydro capacity, i.e., those technologies which are setting the clearing price

most of the time. In the Portuguese market region, EDP controls nearly 80% of the market.

Overall, the market equilibrium hence is determined by the strategies of the large power

producers.2

2During our period of observation, i.e., the year 2017, average market prices in both trading zones differed
only by 0.24 AC /MWh, (52.24 AC /MWh in the Spanish zone and 52.48 AC /MWh in the Portuguese zone)
indicating that interconnection capacities where largely sufficient to enable a common price in both trading
zones.
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2.3 Production technologies and CO2 emissions

Renewable technologies, such as wind power, bio-energy, small-scale hydro, and concentrated

solar power (CSP) meanwhile dominate the market and represented approximately 43% of

sales in the day-ahead market in 2017. Energy from nuclear (19%), coal (18%), natural gas

(11%), and hydro power plants (9%) made up the rest of production.

Table 1: Production technologies by firm.

EDP Iberdr. Endesa Naturgy Viesgo Engie REN Cepsa All

Coal 31.2 11.4 61.0 39.4 25.5 0.0 56.1 0.0 22.4

Natural Gas 18.6 25.0 22.0 36.2 3.8 45.4 43.9 47.7 16.8

Renewable 37.5 22.4 9.6 8.4 38.5 54.6 0.0 52.3 16.2

Nuclear 0.0 12.8 4.4 8.2 0.0 0.0 0.0 0.0 3.2

Hydro 12.7 24.1 3.0 6.1 16.8 0.0 0.0 0.0 9.2

Residual 0.1 4.4 0.0 1.7 15.4 0.0 0.0 0.0 1.5

Notes: Sample from 01/10/2017 to 31/12/2017 for hours 17, 18, and 19. Hydro comprises pumped hydro,

residual includes co-generation as well as production from unknown sources.

Table 1 presents the composition of production technologies for the firms in our sample.

We focus on the eight largest firms in the wholesale market, who taken together own all

fossil fuel units that operate in the market. The firms in Table 1 hence are responsible

for 100 percent of the market’s CO2 emissions. The last column reflects overall technology

shares across all eight firms. As can be seen, several companies employ coal-fired plants,

which carry the highest carbon intensity among all generation technologies. Also gas-fired

plants are deployed to a significant extent. Depending on the plant efficiencies, gas-fired

units typically only emit about half the CO2 emissions when compared to coal-fired units.

Because firms hold diverse production portfolios that differ in their carbon intensity,

firms’ pricing strategies will impact overall carbon emissions in the market. For instance,

aggressive bidding behavior by Endesa will result in relatively more coal-fired generation and

thus entail increased overall carbon emissions.
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3 Model

This section presents a model for strategic bidding in multi-unit uniform price auctions, the

clearing mechanism used in the Iberian electricity wholesale market.3 We use the model to

investigate the impact of firms’ strategic pricing behavior on their equilibrium output and

carbon emissions. In particular, we outline a supply function equilibrium as in Hortaçsu

and Puller (2008). The model allows to account for the firms’ forward positions, which have

been shown to have a large impact on strategic pricing (Allaz and Vila, 1993; Bushnell et al.,

2008).

Each firm i submits a supply function Si(p) that specifies its supply Si at each market

price p. Demand is stochastic and denoted as D̃(p) = D(p) + ε, where ε is a random

component of power demand. Market clearing at the equilibrium price p∗ requires∑
i

Si(p
∗) = D̃(p∗). (1)

Firms submit their supply schedules before knowing realized demand and consequently

face randomness on the equilibrium market price, which depends on the realized level of

power demand. Firms hence must maximize expected profits and to this end require a prior

on the demand distribution and the resulting range of possible market prices.

We follow Hortaçsu and Puller (2008) who map randomness from demand to price and

write expected firm profits as

E[πi] =

∫ p̄

p

πi(Si(p))dHi(p |Si), (2)

where Hi(p) is the cumulative distribution function of the market price, given firm i’s

supply at this price.

Firms can sell on forward markets or participate in the spot market for electricity. Profits

of firm i therefore include revenues from sales in the day-ahead spot market and in the forward

market. Firm i’s realized profits at any market price p can be written as

πi(Si(p)) = Si(p, Fi)p− Ci(Si(p))− (p− pF )Fi, (3)

where Si(p, Fi) is the supply of firm i at price p, Fi is the firm’s forward position, Ci

3Most power exchanges around the globe clear as multi-unit uniform price auctions (see, e.g., Wilson,
2002).

8



denotes the cost function, and pF is the forward price. The first two terms capture a firm’s

revenue and production cost. The last term adjusts profits for price differences between the

spot market price p and prices realized for the firm’s forward sales pF . This is, for its forward

sales firm i receives the price pF instead of the spot market price p.

The way forward contracts change optimal supply schedules is more apparent to see after

rearranging equation (3) to

πi(Si(p)) = (Si(p, Fi)− Fi)p− Ci(Si(p)) + pFFi. (4)

As can be seen, revenues from forward sales pFFi are sunk and disregarded in the optimal

pricing decision. In addition, as shown in the first term, forward sales Fi decrease the quantity

of firm i that receives the spot market price and hence reduce incentives to charge high prices

(Wolak, 2000; Mansur, 2007; Bushnell et al., 2008).

To determine firm i’s optimal supply, S∗i (p), we substitute profits in equation (4) into the

expected profits in equation (2) and derive the first-order condition with respect to Si(p).

The resulting Euler-Lagrange optimality condition for the optimal supply function yields

p− C ′i(S∗i (p)) = (S∗i (p)− Fi)
HS(p, S∗(p))

Hp(p, S∗(p))
, (5)

where S∗i (p) is firm i’s optimal supply function, C ′i marginal costs, and HS and Hp are

derivatives of Hi with respect to supply and price, respectively. The left hand side represents

the firm’s mark-up at its supply of S∗i (p). The right hand side shows that the mark-up

depends on overall output, net of forward commitments. Appendix A presents more details

on the derivation of the optimality condition.

To interpret the optimality condition, note that Hp is the probability density function of

price and must be positive. Also HS must be positive because additional supply increases

the likelihood that price is below any given value. Vice versa, withholding supply decreases

the likelihood that the equilibrium price is below a certain value. The right hand side

consequently is positive and determines a non-zero mark-up, unless the supply effect of firm

i on the price distribution is infinitely small.4

To compute equation (5), one needs to either derive or estimate HS and Hp. As Hortaçsu

and Puller (2008) show, the analytical derivation simplifies when restricting the uncertainty

to be additively separable, i.e., uncertainty shifts demand but does not rotate it. We hence

4As discussed in Wolak (2003) and Hortaçsu and Puller (2008), the strategies that follow equation (5)
are also ex-post optimal, as long as shocks to supply or demand are additive.
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continue with the assumption below:

Assumption 1 Uncertainty ε causes parallel shifts in the demand function but does not

rotate the demand curve.

Using this assumption, as shown in Appendix A, the optimal pricing rule greatly simplifies

and yields the standard inverse elasticity mark-up rule:

p∗ − C ′i(S∗i (p∗)) =
S∗i (p∗)− Fi

−RD′i(p∗)
. (6)

The price cost margin on the left-hand side of the equation is a function of the firms

net-position in the market, S∗i (p∗) − Fi, and its ability to affect the equilibrium price. The

latter is reflected by the slope of the firm’s residual demand curve RD′i(p
∗).5 As RD′i(p

∗)

is negative, the denominator on the right-hand side becomes positive. If a firm thus has a

lot of market power, the residual demand function is flat and optimal mark-ups are large.

In contrast, a steep residual demand function signifies that the firm is not able to raise

equilibrium prices as reductions in quantity only lead to neglectable price increases.

Equation (6) at the same time clearly demonstrates that positive mark-ups will only be

realized as long as net-sales, S∗i (p∗)−Fi, are positive. Intuitively, the firm is only interested in

achieving higher equilibrium market prices as long as it is a net seller in the market. Should

the optimal quantity for a given equilibrium price turn out to be smaller than the forward

obligations of the firm, incentives revolve and the firm prefers to use its market power to

decrease the equilibrium price. In this case, the firm acts as a net-buyer and bids below

marginal cost such as to decrease the price it needs to pay to meet its forward obligations.

4 Empirical strategy

The aim of our analysis is to estimate firms’ strategic ability to maximize expected prof-

its, and to show what heterogeneity in strategic ability implies for the firms’ overall CO2

emissions. To implement this agenda, we first quantify the strategic ability of the power

producing firms in our sample. Following the extant literature (Wolfram, 1999; Hortaçsu

and Puller, 2008; Ciarreta and Espinosa, 2010; Brown and Eckert, 2021), we proceed by

computing the deviations between observed strategies and those resulting from optimal bid-

ding behavior. While we can directly observe realized bidding behavior, we need to compute

counterfactual optimal bidding schedules from the data.

5We refer to a setting with quantity on the y-axis and price on the x-axis.
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4.1 Computing optimal bidding strategies

To compute optimal price-quantity combinations for the supply function of each firm, we

make use of the optimality condition as stated in equation (6). Starting from equation (6),

we require three central components to set up the optimal supply schedule of firm i. In

particular, we construct a firm’s optimal supply function for each hour t and require:

• Firm i’s marginal cost curve C ′i at time t,

• Firm i’s forward position Fi at time t,

• The slope of firm i’s residual demand curve RD′i(p
∗) at time t.

Our dataset comprises all demand and supply bids but no data on firm’s production costs

and their forward positions. We therefore start by estimating the marginal cost functions

for each firm using engineering estimates. Specifically, we estimate marginal cost curves for

each hour t and firm i using information on the marginal costs of renewable, nuclear, coal,

and natural gas production units.6 Our estimation procedure makes use of the fact that,

to maximize profits, firms deploy their generation technologies in increasing order of their

marginal costs. This is, we assume that firms follow the merit order when offering their

production units to the market. We then use an isotonic regression to fit an upward sloping

step function and assign marginal cost to each unit within the merit order.7

In a second step, we identify a firm’s forward position, or more broadly speaking the

hedging position of firm i in hour t. We make use of the optimality condition as stated in

equation (6): Theory predicts that firms offer electricity below marginal cost as long as they

are net-buyer, i.e. for S∗i (p) < Fi. In contrast, firms price their electricity above marginal

cost as soon as they are net-seller to the market, i.e. for S∗i (p) > Fi. Firms consequently

price electricity equal to their marginal cost when their supply S∗i (p) exactly matches their

hedging position Fi.

Following Hortaçsu and Puller (2008) and Reguant (2014), we exploit this condition to

infer a firm’s forward position. This is, we combine observed bidding schedules and the

6Note that our sample also includes hydro and pumped storage units, for which marginal cost parameters
are hard to determine, as they depend on the opportunity costs to sell stored energy in the future. We
hence use cost information on production from renewable, nuclear, coal, and natural gas power plants to fit
a marginal cost curve over all types of production, including hydro and pumped storage power plants.

7Willems et al. (2009) follow a similar approach, but employ a cubic function to estimate marginal cost.
We experimented with alternative derivations of marginal cost curves via polynomial fitting with various
degrees of freedom, and by fitting non-decreasing step functions with other functional forms. However,
our chosen approach yielded the best fit with bottom-up calculated and engineering based marginal cost
parameters.
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estimated marginal cost curves, and determine their intersection to infer a firm’s hedging

position Fi in each hour t. Technically, we define the cumulative sum of all bids submitted

below marginal cost as hedging position. Note that this approach is contingent on the firms

actually being aware of their hedging position. Yet, we believe it is fair to assume that

even firms with limited strategic ability have good knowledge of their hedging position Fi,

whereas they have difficulties in forming a prior on demand or their competitor’s strategies.

Last, demand and supply curves are directly observable in our data and allow to construct

residual demand curves for each firm. After assigning individual offers to companies, we

possess all necessary information to derive residual demand curves for each firm i in our

sample. Subtracting all supply curves of competitors Sj 6=i from realized demand D(p), we

construct residual demand curves RDi for each hour. Panel (a) in Figure 1 illustrates this

approach. Note that residual demand becomes negative as soon as the sum of competing

offers suffices to cover all demand.
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Figure 1: Panel (a) shows the residual demand for EDP, data for hour 18 on 01/11/2017. Residual demand
(black) is derived by subtracting supply of all competitors Sj 6=i (red) from demand D (blue). Panel (b) shows
the estimated slope of residual demand for all potential price levels. In line with the optimality condition in
equation (6), we plot residual demand on the y-axis over price on the x-axis.

Finally, to obtain the slope of residual demand, RD
′
i in equation (6), we estimate the

slope by fitting a polynomial with nine degrees of freedom and enforce it to be monotonically

decreasing.8 In essence, the slope is a measure for the market power of firm i. We illustrate

this approach in Panel (b) of Figure 1.

8We use the MonoPoly package in R. We also considered following Ito and Reguant (2016), keeping
residual demand locally linear, yet for our sample this complicates estimation for prices close to zero or the
price-cap.

12



Given all variables computed as above, we are able to derive optimal supply functions

for all suppliers using the optimality condition in equation (6). Specifically, we construct

the optimal supply function by finding the optimal bid for each quantity offered. This is, we

minimize the difference between the left-hand side and the right-hand side of our optimality

condition as stated in equation 6. This minimization delivers an optimized bidding schedule

for each firm that we can use to quantify firms’ strategic ability.

4.2 Quantifying strategic ability

To quantify the strategic ability for each firm in the sample, we compare the optimal bidding

schedules to the actual offer curves observed in the data. As metric for the level of strategic

ability, we compare profits realized in both cases, i.e. we quantify the “money left on the

table”.

We compute profits for the observed bidding behavior by calculating the revenue obtained

from a firm’s observed supply curve, and subtracting costs using the respective estimated

marginal cost curves. Note that, to measure sophistication of bidding in the day-ahead mar-

ket, we only consider profits that accrue due to participation in the day-ahead market. This

means we only include additional profits and neglect profits from forward sales. Extracting

clearing prices p∗ and offered quantities from the data, firm i’s actual profits πa
i hence are

computed as

πa
i = (Si(p

∗)− Fi) p
∗ −

m∑
j=1

C
′

i(j)si(j). (7)

The first term reflects revenues from net-sales of the firm, i.e all supply bids located in

between the firm’s forward position Fi and its total matched supply Si(p
∗). Individual bids

that jointly make up the net-sales of the firm are denoted by j, whereas m stands for the

total number of bids j. The second term represents the cost of production for all supply bids

j which are comprised of marginal cost C
′
i for each bid j and the associated size of each bid

si(j).

Note that firms sometimes over-hedge. When forward sales Fi exceed the quantity Si(p
∗)

matched in the day-ahead market, firms become net-buyers and the profit function needs to

be adjusted. Profits are now calculated as

πa
i = (Si(p

∗)− Fi) p
∗ +

m∑
j=1

C
′

i(j)si(j), (8)
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and the first term turns negative as it now reflects expenditures for the net-purchases of

the firm. The second term adds savings from avoided production cost. As marginal cost of

production C
′
i(j) exceed the clearing price p∗, the firm realizes profits in the market.

For our counterfactual on optimal pricing behavior, we use a firm’s optimal supply func-

tion as characterized by the modeled optimality condition. In particular, we calculate a

counterfactual market outcome had firm i behaved optimally, holding all other firms’ strate-

gies constant. Note that this counterfactual yields optimal firm profits and at the same time

changes the clearing price, overall quantity supplied, as well as all firms’ equilibrium carbon

emissions.9 We calculate counterfactual optimal firm profits as

πcf
i =

(
Si(p

cf )− Fi

)
pcf −

m∗∑
j=1

C
′

i(j)si(j), (9)

where p∗cf is the counterfactual clearing price given firm i’s optimal supply, and m∗

denotes the total number of bids that make up the net sales of firm i, if the latter behaves

optimally. When the firm acts as net-buyer in the market, the profit function again needs

to be adjusted to

πcf
i =

(
Si(p

cf )− Fi

)
pcf +

m∗∑
j=1

C
′

i(j)si(j). (10)

In line with the calculation of actual profits in equation 8, savings from avoided produc-

tion costs exceed expenditures for net-purchases.

5 Data

The main data source we employ consists of all supply and demand side bids in the Iberian

day-ahead electricity market within the last three months of the year 2017. The data is

available on the OMIE website. We chose this observation periods for two reasons. First,

there were no substantial regulatory changes that could distort our analysis. Second, energy

from fossil fuels had a large market share during this period, which renders our marginal

cost curve estimations more accurate.

To ensure that our analysis is not affected by start-up and ramping cost of fossil fuel

power plants, we restrict our sample to afternoon hours (17, 18, and 19). These hours

9For instance, if a firm’s optimal supply function is flatter than its observed supply curve, firm i’ optimal
pricing is relatively more aggressive and thus yields a lower market clearing price p∗cf , and an increase in
the market share of firm i.
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exhibit rather low demand, but are nestled in high demand hours. Start-up cost thus not

arise in our sample as power plants are already running.10

We match the bid information provided by OMIE (price, quantity, power plant identifier

and a dummy stating whether the bid was called) with a list specifying the ownership

structure of each power plant. This matching allows us to assign all bids to the respective

parent company. We focus on the largest fossil power producers, i.e., EDP, Iberdrola, Endesa,

Naturgy, Viesgo, Engie, REN, and Cepsa. All other plants are treated as belonging to a

representative fringe firm. Given bidding information and ownership structure we construct

the demand curve and individual supply curves for each company and hour in our sample.

We merge in data on the marginal cost of fossil power plants, which depend on the plant

efficiency, i.e the heat-rate. Detailed information on individual efficiency rates were available

for some, but not all coal and natural gas plants in our sample. When missing, we thus used

the commissioning year of a plant as a proxy for its efficiency and linearly interpolated to

assign all efficiency rates.11

Using power plant-specific heat rates and market prices for coal and natural gas, we then

derive marginal cost for each fossil power plant in the sample. We account for respective fuel

prices, the price of carbon emission certificates, variable operation and maintenance cost, as

well as taxes and other levies in Portugal and Spain.12 We provide a detailed overview of the

input factors for our calculation in Table A.1 in the Appendix. Table A.2 in the Appendix,

provides the magnitudes of cost components, levies, and taxes. Finally, Table 2 presents the

summary statistics.

6 Results

This section presents our findings on the impact of firms’ strategic ability on market efficiency

and market externalities. Figure 2 and Figure 3 illustrate that there is clear evidence of

heterogeneity in firms’ strategic ability. In particular, Figure 2 plots the market outcomes

for an exemplary hour for the four largest firms in our sample, and shows observed supply

curves (red) and counterfactual optimal supply schedules (black). As can be seen, especially

around the median clearing price of about 61 AC/MWh, large firms’ observed supply curves

10Reguant (2014) shows that for the chosen afternoon hours, start-up cost do not impede correct estimation
of mark-ups.

11Willems et al. (2009) follow a similar approach to construct engineering estimates of marginal costs of
power generation.

12Marginal cost of renewable non-hydro production are set to zero. For nuclear power production we
calculate with marginal cost of 14AC / MWh, based on estimates by the WNA (2006), plus a fuel tax of 5AC /
MWh. The 7% tax on electricity production is added accordingly.
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Table 2: Summary statistics.

Mean Median Std. dev. Min Max Obs.

Observed bids [AC/MWh] 61.9 57.1 50.4 0.0 180.3 176,631

Optimal bids [AC/MWh] 43.5 52.2 25.9 0.0 179.2 176,631

Marginal cost [AC/MWh] 43.4 50.8 18.1 0.0 67.4 176,631

Bid-size [MWh] 68.5 30.2 136.6 0.1 4,545.5 176,631

Res. demand slope [MW/AC] -549.2 -482.2 357.2 -2,472.2 0.0 176,631

Clearing price [AC/MWh] 61.6 61.8 11.1 11.9 88.9 276

Load [MWh] 30,775 30,620 4,469.5 21,441 40,996 276

CO2 emissions [tons/hour] 9,043.4 9,949.4 3,498.0 54.6 15,838.1 276

Notes: Sample from 01/10/2017 to 31/12/2017 for hours 17, 18, and 19. Observations are hourly and

comprise data from the eight largest carbon emitting power producers (EDP, Iberdrola, Endesa, Naturgy,

Viesgo, REN, Cepsa, and Engie).

match the optimal supply curves well. Where firms deviate, they mostly submit supply

curves that are less aggressive when compared to optimal pricing. Significant deviations

from the model only occur out of sample, i.e., at clearing prices above the maximum price in

our sample of about 89 AC/MWh, indicating that firms have a good prior on the likely range

of equilibrium market prices.

In contrast, Figure 3 plots the actual and counterfactual optimal supply curves for the

four smallest firms in our sample. Clearly, the smaller firms follow optimal supply schedules

to a significantly lesser extent. In particular, small firms submit excessively steep supply

curves to the market, thereby diverging significantly from optimality and withholding too

much capacity. As can be seen, the small firms in optimum should price very aggressively

and close to marginal costs instead.

Our finding that larger firms show higher strategic ability and bid closer to optimality

confirms similar results in Hortaçsu and Puller (2008) and Hortaçsu et al. (2019) for the

Texas balancing market. Markedly, our results confirm this finding for the day-ahead market,

where traded volumes are significantly larger and one would expect all companies to choose

approximately optimal supply functions.

To assess the performance of companies over our entire sample, we aggregate market

outcomes at a monthly scale. In line with Hortaçsu and Puller (2008), we measure the

performance of firms as the percentage of potential profits that firms actually achieved. A

higher percentage thus signals a higher degree of strategic ability, i.e., bids closer to optimal
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(d) Endesa

Figure 2: Large firms, hour 17 on 01/11/2017. Estimated marginal costs curves (blue), observed supply
curves (red) and counterfactual optimal supply curves (black).

bidding schedules.

Panel (a) of Figure 4 displays our results and corroborates our findings. As shown, for

larger firm size, the mean performance of the firms in our sample increases. Small firms, such

as Cepsa, REN, and Engie leave substantial profits on the table, while the intermediate and

large companies are performing substantially better. Especially Iberdrola, a traditionally

large market player, displays close to optimal pricing behavior and shows high strategic

ability.

To illustrate the market impact of this heterogeneity in pricing strategies, Panel (b) of

Figure 4 displays the impact on market prices when a company follows optimal bidding
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(d) Engie

Figure 3: Small firms, hour 17 on 01/11/2017. Estimated marginal costs curves (blue), observed supply
curves (red) and counterfactual optimal supply curves (black).

strategies. As shown, optimal pricing behavior would result in lower market prices for

each firm. This is because optimal supply functions would imply more aggressive pricing.

Furthermore, Panel (b) of Figure 4 shows that the price impact of optimal behavior by large

firms is higher when compared to smaller firms. Hence, although larger firms tend to show

more sophisticated pricing, their pricing strategies are pivotal for the market outcome so that

even small improvements have large impact on market prices and rents. As such, we find

that both, small deviations by large firms, and large deviations by smaller firms, can have

large consequences on the market outcomes. Our findings therefore demonstrate that the

observed and excessively steep supply curves of producers not only harm firms’ own profits,

18



0

25

50

75

100

2500 5000 7500 10000

Company size (maximum capacity sold per month)

P
e

rc
e

n
ta

g
e

 o
f 

p
o

te
n

ti
a

l 
p

ro
fi
ts

 a
c
h

ie
ve

d

Company

Cepsa
EDP
Endesa
Engie
Iberdrola
Naturgy
REN
Viesgo

(a)

−7.5

−5.0

−2.5

0.0

2500 5000 7500 10000

Company size (maximum capacity sold per month)

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 o
f 

c
le

a
ri

n
g
 p

ri
c
e

Company

Cepsa
EDP
Endesa
Engie
Iberdrola
Naturgy
REN
Viesgo

(b)

Figure 4: Panel (a) shows achieved profits in percent of counterfactual optimal profit, observations show
monthly means. Panel (b) shows the effect of optimized bidding on clearing prices, observations show
monthly means. Firm size is measured as maximum hourly output within a month.

but at the same time cause substantial cost for society due to inflated market prices.

6.1 Carbon emissions

Next, we investigate the effects of strategic ability on CO2 externalities. Panel (a) of Figure

5 shows counterfactual carbon emissions had firms been behaving optimally. We again plot

these counterfactual emissions as percentage to actual emissions and against company size

on the horizontal axis. As can be seen, carbon emissions within the market increase, except

for optimized bidding of Iberdrola. The increasing market emissions are largely driven by the

fact that firms optimal supply functions are more aggressive and firms’ electricity production

hence increases under optimal bidding. To confirm this, Panel (b) of Figure 5 shows that,

irrespective of firm size, more electricity is traded in the market when firms submit optimal

bidding schedules. This effect is more pronounced for large firms as their impact on market

outcomes is larger. Hence, the increase in carbon emissions largely stems from an output

effect.

Furthermore, Figure 5 shows significant differences in the impact on overall carbon emis-

sions. To probe into the firm-specific differences, we investigate firms carbon intensity of

generation. Table 3 displays the carbon intensity of production by each company and for ob-

served and counterfactual optimal supply. Clearly, some firms rely on more carbon-intensive

production than others. As can be seen, for most companies the CO2 intensity decreases

upon expanding supply. This is because firms start using hydro and additional gas-fired

supply at the margin, adding to their otherwise coal and renewable based supply.
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Figure 5: Panel (a) shows the effect of counterfactual optimal bidding on overall carbon emissions. Panel
(b) shows the effect of counterfactual optimal bidding on overall quantity. Observations show monthly means.
Firm size is measured as maximum hourly output within a month.

However, market-wide carbon emissions are also driven by a substitution effect: A firm

that bids more aggressively crowds out its competitors. Hence companies with relatively

high CO2 intensity, when bidding more aggressively, push cleaner and less carbon-intensive

supply out of the market. Notably, and as shown in Panel (a) of Figure 5, when Endesa

and Naturgy increase supply and bring more of their carbon intensive production to the

market, overall emissions significantly increase. This explains the high magnitudes shown

for these two firms in Figure 5. Conversely, Iberdrola and EDP bring relatively low carbon

technologies into the market, decreasing the emission intensity of their production and of

the overall market.

Table 3: CO2 intensity of production prior to and after optimization.

EDP Iberdrola Endesa Naturgy Viesgo Engie REN Cepsa

CO2-int. [g/MWh] 379 204 706 535 275 161 680 169

CO2-int. o. [g/MWh] 303 191 608 487 258 314 592 234

Notes: Sample from 01/10/2017 to 31/12/2017 for hours 17, 18, and 19. Carbon intensity of fossil production

in our sample ranges between 337 g/MWh for the most efficient natural gas power plant and 1151 g/MWh

for the least efficient coal power plant.

In sum, our analysis reveals that the welfare increasing effects of optimized bidding on

quantity and prices come at the cost of potentially increasing carbon emissions, as shown in

Figure 5. The magnitude of this effect is moderated by the firms’ relative carbon intensities.

If large and clean companies, e.g. Iberdrola, engage in optimal and more aggressive bidding,
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overall CO2 externalities can decline.

6.2 Robustness

Our previous analysis hinges on a set of implicit assumptions that we briefly address in this

section. First, our analysis is based on the assumption that firms have accurate expectations

regarding the slope of the residual demand curve they face. To show that our findings are not

contingent on this assumption, we rerun our analysis with residual demand slopes from past

demand realizations. Specifically, we assume that market patterns reoccur and allow firms to

form reasonable expectations. We assume that patterns reoccur on a weekly basis, i.e., firms

are able to learn from observations during the last week. To implement this robustness test,

we use the residual demand realization on the same weekday and hour from the previous

week instead of the actual realized demand slopes. We use these slopes for our optimality

conditions and rerun our analysis. Our central findings remain unchanged, as shown in

Figure A.1 in the Appendix. Though magnitudes differ slightly, the positive relationship

between firm size and strategic ability prevails. Similar to achieved profits, also the results

on carbon emissions are almost unchanged, as shown in Figure A.1 in the Appendix.

A further assumption in our analysis relates to our marginal cost estimates. For instance,

the cost measures could be flawed as they are defined as incremental marginal cost that

neglect start-up cost. We solve this problem by means of sampling and, in the empirical

analysis, solely include afternoon hours (17, 18, and 19). These hours exhibit relatively low

demand levels but are nestled in high demand hours. Thereby we ensure that start-up cost

do not arise in our sample. In line with this approach, Reguant (2014) shows that for the

chosen afternoon hours, start-up cost do not impede correct estimation of mark-ups. We

hence view start-up costs to be negligible in our sample.

In addition, we employ a bottom-up approach to estimate marginal cost of thermal power

plants, where we use engineering estimates for each plant and then fit a marginal cost curve.

To that end we make use of an isotonic regression. To ensure that our results are not driven

by the fitting of the marginal cost curves, we tested other fitting approaches, i.e. with a

polynomial fit with various degrees of freedom and a monotonously increasing step function.

Again, our results remain unchanged.

Last, electricity trading is organized in sequential markets. We study the day-ahead

market. Yet, firms could exploit systematic price differences between the day-ahead and

subsequent intraday markets as discussed in Ito and Reguant (2016). To rule out systematic

arbitrage in our sample, Figure A.2 in the Appendix shows price differences between the day
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ahead and the intraday market. Differences are neither systematic, nor substantial. The

mean price difference accrues to -0.55 AC /MWh. On average, prices are thus slightly higher

in the day-ahead market. This is in line with the findings of Ito and Reguant (2016) for their

2010 to 2012 sample. Following their rational, dominant suppliers hold back capacity in the

day-ahead market, whereas fringe firms are overselling to profit from a price premium. How-

ever, we observe that especially smaller firms are holding back a relatively higher quantity

(submitting excessively steep supply curves) as compared to large firms. Our findings can

thus not be rationalized by the presence of subsequent trading opportunities, either.

6.3 Estimating the Effect of Mergers on Sophistication and Externalities

Lastly, we compute policy-relevant counterfactuals. In particular, we investigate the role

of strategic ability and CO2 emissions in merger policy. The main idea is that when two

companies merge, they will consolidate their strategy and trading departments. In turn,

we consider counterfactuals where the merged company’s strategic ability is determined by

the more sophisticated firm participating in the merger. We are interested in the market

outcomes ex-post of the merger and the effect on CO2 emissions.

In line with this approach, we merge a large, i.e. sophisticated, and a small, i.e. less

sophisticated firm. To determine in how far firms follow the optimality condition in equation

(6), we first estimate the first order condition for all companies in our sample. Our theoretical

prediction is that firms set their mark-up such as to satisfy equation (6) for each submitted

bid in period t. Observing all variables of equation (6), we calculate the mark-up on the

left-hand side of equation (6) and the ratio of the market supply to the residual demand

slope on the right-hand of equation.13 We then, for each company i, estimate

pit − C ′it(Sit(p)) = β
Sit(p)− Fit

−RD′it(p)
+ ε, (11)

where theory predicts β = 1. Where a company’s β is above (below) 1, this company

submits too steep (too flat) supply functions.

Table 4 summarizes the results of the linear regression, where we order firms according to

their size. As expected, the coefficients of larger firms are closer to one than those of smaller

firms, corroborating our earlier findings.

For our merger counterfactual, we then choose Iberdrola as a large firm that depicts rela-

tively efficient bidding, and Engie, whose β coefficient in Table 4 indicates less sophisticated

13To make sure that we only include relevant bids with a positive probability to be price-setting, we only
use bids within the 95% quantile of the observed clearing prices.
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Table 4: Deviation from optimality.

EDP Iberdrola Endesa Naturgy Viesgo Engie REN Cepsa

β coefficient 2.56 1.37 0.94 1.80 9.18 30.54 4.70 190.23

Observations 8283 5397 6915 29144 134 1164 2090 112

Notes: Mark-up as dependent variable, coefficient is defined as inframarginal quantity over -RD’.

bidding behavior. Furthermore, recalling our discussion on the firm’s production portfolios,

Iberdrola owns a relatively diversified portfolio, whereas Engie operates renewable assets

and gas-fired power plants. To compute the merger case under our assumption that the

more sophisticated firm determines the “new” bidding strategy, we combine the produc-

tion portfolios of Iberdrola and Engie and use Iberdrola’s β coefficient of 1.37 in Table 4

to construct the joint supply curve ex-post the merger. This is, we use equation (11) and

set β = 1.37 to obtain the counterfactual merged supply function, holding all other firms’

strategies constant.

Table 5: Effect of merger on market outcomes and CO2 emissions

Week Profits (firm) CO2 (firm) CO2 (all) CO2 int. (all) Quantity (all) Price

1 164.27 124.69 99.40 97.45 102.09 94.82

2 84.55 108.04 99.47 98.61 100.89 93.31

3 98.80 128.68 100.03 99.27 100.69 93.36

4 102.42 127.61 100.35 99.10 101.35 93.79

5 122.87 125.56 101.77 100.72 101.05 94.99

6 136.57 105.46 99.48 98.56 100.86 96.06

7 99.47 108.59 100.46 99.57 100.85 95.42

8 99.52 110.10 100.15 99.05 100.95 93.98

9 94.43 108.97 100.63 99.29 101.20 94.79

10 100.54 103.88 100.17 98.74 101.43 95.44

11 92.84 107.22 100.24 99.94 100.25 95.73

12 109.01 111.14 100.64 99.62 100.93 93.81

Overall 100.81 112.20 100.28 99.21 101.00 94.82

Notes: All numbers are in percentage terms and reflect outcomes for the merger case as compared to original

market outcomes with two distinct companies (Iberdrola & Engie)

Figure 6 shows the original and counterfactual market supply for the two merged firms.

In Panel (a) and (b) original supply curves are displayed in red and underlying marginal
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Figure 6: Results for hour 17 on 01/11/2017. Panel (a) and (b) show observed bids and marginal cost
for Iberdrola and Engie when both firms act individually. Panel (c) shows marginal cost and counterfactual
bids of the newly merged company. For counterfactual bids we assume the merged firm features the mean
strategic ability of Iberdrola (β = 1.37).

cost in blue. Panel (b) shows the submitted supply bids of Engie. Apart from neglectable

renewable sales, Engie prices all its efficient, low-carbon gas-fired production out of the

market by submitting an excessively steep supply function to the market. In Panel (c) we

show the counterfactual supply function of the merged firm, displayed in black. The merged

firm features the level of sophistication of Iberdrola and submits a nearly optimal supply

function to the market. The efficient natural gas power plants of Engie are now integrated in

the production portfolio of the merged firm and exhibit an increased probability to be called

for production. This contributes to increased market efficiency and a lower carbon intensity

of production.

Using the counterfactual supply curves for the merged company, we compare market

outcomes with the merger to the observed market outcomes, i.e. the case where the two

firms act independently. Table 5 summarizes our results. We aggregate market outcomes at
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a weekly level. Our counterfactual calculations show that the merger pays off and overall

profits slightly increase upon merging, as shown in column one. Yet, also the CO2 emissions

of the merged company increase as compared to the sum of both individual firms, as depicted

in the second column of Table 5. The emission intensity of production decreases, thereby

counteracting the effect of increased quantity sold in the market. Overall, our results suggest

that the merger would increase market efficiency due to higher quantity sold at lower prices.

As emissions are not significantly increased, our analysis shows that in this case a merger

is beneficial for producers and consumers, while not significantly increasing overall CO2

emissions in the market.

7 Conclusion

Standard microeconomic theory suggests that all market participants are able to maximize

profit, e.g. by choosing optimal prices. Recent findings in behavioral industrial organization

however suggest that differences in firm characteristics can lead to heterogeneity in firms’

strategic sophistication (Hortaçsu et al., 2019). As a result, the lack of strategic ability can

be costly and further deteriorate market efficiency. The consequences of (a lack of) strategic

ability on market externalities have received little attention in the extant literature.

In this paper, we have studied the impact of strategic ability on pricing and resulting

market externalities. Our empirical setup exploits rich firm level data on the Spanish day-

ahead electricity market. Using observed pricing strategies, we have found that especially

small firms deviate substantially from optimal pricing rules and create market inefficiencies.

We have also identified that deviations from optimality can substantially impact the market’s

CO2 emissions. In particular, emissions are inefficiently high when “clean” firms price low-

carbon production out of the market due to a lack of strategic sophistication.

To propose policy counterfactuals, we investigate the effects of a potential merger between

a sophisticated and a non-sophisticated company. Overall welfare impacts are substantial.

Importantly, welfare gains come at no significant increase in overall CO2 emissions. Instead,

the carbon intensity of the market declines. Our empirical method can serve as a first and

easily applicable test of the effects of potential mergers on market externalities.
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Appendix

A Model and first-order condition

Rewriting expected profits in equation (2) as E[πi] =
∫ p
p π(Si(p))Hp(p, S(p))dp, we can integrate

by parts and obtain

E[πi] = π(Si(p))H(p) |pp −
∫ p

p

[
d

dp
π(Si(p))

]
H(p)dp.

Using H(p) = 0 and H(p̄) = 1 yields

E[πi] = π(Si(p))−
∫ p

p

[
d

dp
π(Si(p))

]
H(p)dp.

The first term is a constant, so maximizing the integrand of the second term suffices. The derivation

then proceeds as in Hortaçsu and Puller (2008) and yields the optimality condition in equation (5).

To derive the cumulative price distribution Hi(·), let the index −i denote aggregate market

quantities net of firm i. Then, the probability that the clearing price p∗ is below any price p can

be written as the probability that supply is larger than demand at price p:

Hi(p, Si) = Pr (S−i(p) + Si > D(p) + ε | Si) (12)

= Pr
(
−ε > D(p)− S−i(p)− Si | Ŝi

)
= 1− Fi (D(p)− S−i(p)− Si | Si) ,

where Fi is the cumulative distribution function of −ε. The derivatives are

HS =
∂Hi

∂Si
= −fi(D(p)− S−i(p)− Si)

∂

∂Si
(D(p)− S−i(p)− Si)

and

Hp =
∂Hi

∂p
= −fi(D(p)− S−i(p)− Si)

∂

∂p
(D(p)− S−i(p)− Si) .

Hence we can write
HS(p, S∗(p))

Hp(p, S∗(p))
=

1

RD′i(p)
,

with RD′i(p) = − ∂
∂p (D(p)− S−i(p)) being the slope of firm i’s residual demand.
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B Marginal cost

Table A.1: Overview of variable cost input data for coal and gas-fired generation.

Data

type

Content Scope Source

Plant effi-

ciencies

Plant-specific efficiency figures

where possible; or else average

efficiencies acc. to year of

commissioning

All coal/ gas-fired

plants bid into the

day-ahead in 2017

Global Energy

Observatory

Coal

prices

Daily spot prices for imported

coal

2017 Bloomberg MFE1

COMB

Natural

gas prices

Daily spot prices for gas prices in

the Iberian gas market

2017 MIBGAS Data 2017,

product GDAES D+1

EUA

prices

Daily spot prices for EU-ETS

allowances (EUAs)

2017 Bloomberg

EEXX03EA

National

environ-

mental

taxes

1) Taxes on use/ disposal of input

resources 2) Energy generation

tax (all technologies)

Power plants on

Spanish territory;

Rate levels of 2017

Ley 15/2012 Ttulo I,

Ttulo III; Comisión

Nacional de Enerǵıa

(2013)

Clawback

rate

Charge to compensate for unequal

tax burdens

Power plants on

Portuguese

territory; Rate

levels of 2017

Decreto-Lei n. 74/2013

Artigo 1.; EDP (2018)

Variable

O&M

costs

Median variable O&M costs per

MWh

Coal and gas-fired

plants, dataset of

2015

IEA (2015)

Notes: We abstract from additional variable cost factors that may be attributed to start-up or ramping

cost.
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Table A.2: Overview of magnitudes of parameters applied in the marginal cost estimation.

Data type Value Source

Clawback charge Portugal 6.50 AC /MWh until

16.11.2017 4.75 AC /MWh

as of 17.11.2017

Decreto-Lei n.

74/2013 Artigo 1.;

EDP (2018)

Energy generation tax Spain 7 % of revenue Ley 15/2012 Ttulo

I

Fossil fuel consumption tax Spain 0.65 AC /GJ Ley 15/2012 Ttulo

III

Variable O&M cost coal 2.52 AC /MWh IEA (2015)

Variable O&M cost gas 3.18 AC /MWh IEA (2015)

Net calorific value hard coal (averaged

for Spains main import origins Russia,

Colombia, Indonesia)

7.333 MWh/ton United Nations

(2015)

Notes: The Portuguese clawback mechanism limited cost differences but failed to completely compensate

taxation in Spain.
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C Figures
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Figure A.1: Panel (a) shows achieved profits applying past residual demand realizations, observations show
monthly means. Firm size is measured as maximum hourly output within a month. Panel (b) shows the effect
of optimized bidding on overall carbon emissions, applying past residual demand realizations, observations
show monthly means. Firm size is measure as maximum hourly output within a month.
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Figure A.2: Difference between clearing price in first intraday market and day-ahead market
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