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Abstract4

While steep learning curves have been documented for lithium-ion battery packs,5

little evidence exists on whether total system prices for end-users reflect this decline.6

We use project-level data from California to estimate system price dynamics and expe-7

rience rates for battery storage systems. We document low experience rates of about8

1.3%, i.e., with every doubling in cumulative projects, system prices fall by 1.3%.9

Larger systems show higher experience rates of up to 11%, while smaller systems show10

slightly negative experience rates. We find that limited competition among installers11

is restraining price declines for small systems. Moreover, learning is driven by indus-12

try (rather than firm) experience and is significantly lower for balance-of-system costs.13

In sum, our results suggest that price dynamics relevant to end-users fall behind the14

pace of reported cost declines for battery packs, and warrant policy focus on installer15

competition and balance-of-system costs.16
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Introduction17

Battery storage is a key ingredient for decarbonized energy systems (Arbabzadeh et al.,18

2019). When widely distributed across the system, battery storage facilitates the growth19

of wind and solar energy (Zerrahn et al., 2018; Schill, 2020; Tong et al., 2021), provides20

grid stabilization services (Davies et al., 2019), and supports off-grid electricity provision21

(Jaiswal, 2017; Lee and Callaway, 2018).22

The growing relevance of battery storage coincides with a massive increase in R&D and23

patenting, aiming to reduce battery costs (IEA, 2020, 2022). However, the economics of24

battery storage remain challenging for end-users and often dependent on subsidies (Comello25

and Reichelstein, 2019). As a consequence, understanding learning and potential price reduc-26

tions for battery storage is important for predicting future market shares and for designing27

effective support policies.28

To analyze and forecast learning and cost reductions, previous studies estimate learning29

or experience rates for battery storage. Typically, learning rates indicate the change in30

technology costs associated with a doubling of experience, where experience is measured as31

cumulative installed capacity. The literature finds learning or experience rates for batteries32

mostly between 12% and 30% (Kittner et al., 2017; Schmidt et al., 2017; Hsieh et al., 2019;33

Kittner et al., 2020; Ziegler and Trancik, 2021). Yet, while these results are largely confined34

to analyzing global averages of scarce annual data for battery cells and packs, less is known35

on the dynamics of total system prices for distributed storage systems, i.e. what drives prices36

relevant to end-users. Importantly, although evidence for solar photovoltaics (PV) shows that37

market structure matters (Gillingham et al., 2016), there are no documented experience rates38

for local battery storage markets that take into account the degree of installer competition.39

A further consequence of scarce data is that little attention has so far been paid to estimating40

the price dynamics for the different applications of distributed battery storage (e.g. for small41

2



residential and larger non-residential systems) as well as its different cost components, such42

as balance-of-system (BOS) costs.43

In this article, we provide several contributions to the literature on learning by doing44

and technological progress of battery storage. First, we use rich project-level data from45

California to provide an empirical analysis of total system price dynamics in battery storage46

markets. We estimate experience rates of about 1.3%, implying that, on average, experience47

rates for system prices fall behind the majority of reported experience and learning rates48

for battery packs and cells (Kittner et al., 2017; Schmidt et al., 2017; Ziegler and Trancik,49

2021). Second, we document substantial heterogeneity in total system prices and show50

that experience rates for larger systems are significantly higher than for smaller residential51

systems (11% vs. -2%). Third, we show that besides experience and system size, market52

structure matters. In particular for small storage systems, we find that less competition53

among installer firms is associated with lower experience rates and thus, on average, higher54

system prices. Fourth, we report that non battery-related costs, i.e. BOS costs, show lower55

experience rates than total prices. Lastly, we explore experience spillover effects and find56

a price-reducing effect of industry-wide experience. In contrast, we find that firm-specific57

experience does not explain observed reductions in system prices.58

Overall, our analysis reveals that total price dynamics and specifically BOS costs do59

not match the pace of cost reductions for battery packs. Learning effects play a minor60

role especially for small system prices, which are rather driven by the economics of installer61

firms and the degree of competition among them. Because we find marked differences in62

learning for small residential and larger systems, the results of this article further highlight63

the relevance of tailoring support policies for battery storage to the different use cases.64

In addition, our findings stress the policy potential for reducing BOS costs and increasing65

installer competition to further accelerate investment in distributed storage.66
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Battery storage trends in California67

To analyze technological progress and its determinants, we require detailed data on the68

total prices of individual storage systems. To this end, we conduct our analysis using the69

case of California and rich project-level data provided by the California Public Utilities70

Commission (CPUC). More specifically, the data are from the CPUC’s Self Generation71

Incentive Program (SGIP), which administers the vast majority of subsidized battery storage72

systems in California. SGIP data include, amongst others, information on location, involved73

firms, system size, and “total eligible costs”, i.e. total system prices.74

Although other states in the US have started to promote battery storage, California75

represents the vast majority of distributed storage capacity (82% in 2019 for systems below76

1 MW) in the US (EIA, 2021). The SGIP data hence offer a well representative sample.77

Moreover, cost and growth dynamics are comparable to markets outside the US, e.g. to the78

German market (Figgener et al., 2021, 2022).79

Figure 1 shows the growth of SGIP supported storage projects over time. The program80

has supported about 8,000 systems (panel a) or about 250 MWh of storage capacity (panel b)81

annually over the recent years. In total, the program supports almost 1.1 GWh of cumulative82

storage capacity until 2021. The SGIP data, i.e. our sample, starts in 2008 and ends in83

December 2021 (because there are very few observations in the early years, Figure 1 shows84

data beginning in 2014).85

As further shown in Figure 1, the bulk of capacity additions until 2017 came from larger86

systems (above 10kW). From 2017 onward, the number of small systems (below 10kW)87

surged to several thousand new installations per year. In parallel, this increase led to a88

rising share of residential storage capacity, which in 2021 represents more than 50% of total89

interconnected capacity. Among the reasons for this strong uptake of residential storage are90

wildfire-related power shutoffs, a gradual phase-out of net metering policies, new product91
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Figure 1: SGIP battery systems and installed capacity by size segment. a, number
of subsidized storage systems. b, installed storage capacities. Data as of February 2022.

launches, and government subsidies for adopters (Barbose et al., 2021).92

Similar to distributed solar generation (Gillingham et al., 2016), battery storage prices93

vary substantially across regions. Figure 2 illustrates this price dispersion for battery storage94

by county for large (panel a) and small systems (panel b). As can be seen, prices differ95

considerably by county, ranging from about 900 to 2800 USD per kWh.96

Finally, as shown in panel c of Figure 2, average storage prices decline significantly97

especially in the early years of our sample, with a parallel decline in variance. The strong98

decline for small systems in 2017 coincides with the launch of a new and aggressively priced99

product from Tesla, a firm that acts both as installer and battery technology provider.100

While average prices of small systems tend to slightly adjust upwards thereafter, this price101

decline suggests to include the role of competition, amongst other drivers, to explain the102

heterogeneity and dynamics in system prices as observed in Figure 2.103
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Figure 2: System prices. a, mean prices for large systems by county, number of counties
in parentheses. b, mean prices for small systems by county. c, by size segment and year.
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Estimating experience rates for battery storage104

A well-established approach to measuring technological progress is to use learning rates,105

that indicate percentage changes in technology costs associated with a doubling of experi-106

ence (Wright, 1936; Arrow, 1962). While experience is measured differently in the literature,107

a common approach is to proxy experience with cumulative installed capacity, namely cu-108

mulative kilowatt-hours (kWh) in the case of energy storage (Schmidt et al., 2017). Similar109

to other energy technologies, such as wind power (Schauf and Schwenen, 2021), lithium-110

ion battery learning and experience rates as reported in the literature differ substantially,111

depending on the technology variant, definition of experience, model specification, and the112

sample period. Reported experience rates for electric vehicle battery packs are between 6%113

and 21% (Nykvist and Nilsson, 2015; Schmidt et al., 2017; Hsieh et al., 2019; Kittner et al.,114

2020). Experience rates for batteries range from 15% to 30% (Kittner et al., 2017; Schmidt115

et al., 2017; Kittner et al., 2020; Ziegler and Trancik, 2021), or even higher when accounting116

for performance improvements beyond cost declines (Ziegler and Trancik, 2021).117

Our methodological approach relies on one-factor experience curves (Schmidt et al., 2017).118

In particular, we use SGIP data and predict total prices per kWh for battery storage systems119

(in logs) with experience (measured as cumulative projects, likewise in logs). Since learning120

on total system prices typically does not depend on the energy storage capacity of the121

system, we use the natural log of cumulative projects to proxy for experience. In additional122

analyses, we validate our results using cumulative capacity in kWh. We use least squares123

regression with standard errors clustered at the county level. Additional information and124

summary statistics for the underlying data are presented in the Methods section and in the125

Supplementary Information (Tables 1 to 3).126

Table 1 reports the estimated coefficients and corresponding experience rates. We com-127

pute the experience rates as 1 − 2β, where β is the estimated coefficient for experience. As128
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shown in column (1), a doubling of experience, when measured as the cumulative number129

of projects, is associated with a decline in system prices of 1.29%. In column (2), we proxy130

experience by cumulative installed capacity and find slightly higher experience rates of about131

3.33%. These estimates for project-level data are significantly below the previously reported132

experience rates (Schmidt et al., 2017; Hsieh et al., 2019; Kittner et al., 2020; Ziegler and133

Trancik, 2021).134

Table 1: Estimated experience rates

Dependent variable: Price
in 2021 USD/kWh

All observations

(1) (2)

EXP # −0.019∗

(0.011)
EXP kWh −0.049∗∗∗

(0.015)

Experience rate % 1.29 3.33
Adjusted R2 0.003 0.01
N 28,299 28,299

All variables are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate
significance.

Scale and installer competition135

To further probe into the markedly low experience rates for system prices, we explore whether136

learning effects differ when splitting the sample according to different storage applications.137

We split the sample in residential (i.e. small, 10 kW or less) and non-residential (i.e. larger,138

above 10 kW) systems. This scale threshold is consistent with the definition of the CPUC139

(CPUC, 2016).140

Table 2 presents the results for small and large storage systems. As shown in column141

(1), large systems show experience rates of about 11.11%. In column (2), we control for142
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the market concentration in each county, as measured by the county-specific Herfindahl-143

Hirschman Index (HHI), which impacts prices with marginal significance. The specification144

in column (2) further controls for system size in kWh and duration in hours. We add these145

controls to account for installation-related economies of scale within CPUC’s classification of146

large and small segments. In this specification, we also control for unobserved, time-invariant147

county and installer firm heterogeneity by including corresponding fixed effects. We find an148

experience rate of 8.44%. In sum, the experience rates for large systems are much higher149

than for the sample including all systems and closer to the experience rates as reported in150

previous studies.151

Table 2: Regression results by segment

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.170∗∗∗ −0.127∗∗∗ 0.028∗ 0.021∗∗∗

(0.008) (0.017) (0.014) (0.007)
HHI 0.148∗ 0.577∗∗∗

(0.088) (0.107)
Size kWh −0.039∗∗ −0.173∗∗∗

(0.019) (0.013)
Duration −0.123∗ −0.426∗∗∗

(0.072) (0.031)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 11.11 8.44 −1.93 −1.49
Adjusted R2 0.39 0.66 0.01 0.67
N 2,957 2,957 25,331 25,331

All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
indicate significance, FE fixed effects.

Column (3) of Table 2 shows results for the sample of small systems, which are in stark152

contrast to the results for larger systems. Learning for small systems is close to zero with153

an estimated negative experience rate of approximately 2%. In addition, the relatively good154
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model fit (adjusted R2) of the one-factor model for large systems does not apply to small155

systems.156

We again extend the basic model to control for the county-level HHI, for scale effects,157

and for county and installer firm heterogeneity. The results for this specification are shown158

in column (4) and indicate that scale effects play a significant role for small systems, too.159

For instance, an increase of a small storage system’s capacity by ten percent associates with160

a decrease in system price per kWh of about 1.7%.161

Importantly, we find that also the level of installer competition significantly determines162

the system price. Specifically, a more concentrated installer market (a higher HHI) is as-163

sociated with higher prices. In other words, an increase in the HHI by 0.12 (one standard164

deviation) is associated with an increase in system prices by 5.3%. Notably, the model in165

column (4) that accounts for the HHI and system scale characteristics explains a relevant166

part of the variation in system prices (as shown by the relatively high R2).167

a

6

6.5

7

7.5

8

8.5

Ln
 p

ric
es

 (2
02

1 
U

SD
/k

W
h)

2 3 4 5 6 7 8 9 10
Ln experience (projects)

b

6

6.5

7

7.5

8

8.5

Ln
 p

ric
es

 (2
02

1 
U

SD
/k

W
h)

2 3 4 5 6 7 8 9 10
Ln experience (projects)

Figure 3: Experience curves. a, for large systems above 10 kW. b, for small systems
below 10 kW. 95% confidence intervals are shown in grey.

Figure 3 illustrates the experience curves for small and large systems graphically. Panel a168

of Figure 3 shows the experience curve for larger systems as estimated in column (1) of Table169
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2. In line with the relatively high R2 for larger systems, the model describes the data well. In170

contrast, panel b of Figure 3 shows the experience curve for smaller systems (that correspond171

to the estimates in column (3) of Table 2). As can be seen, there is significant heterogeneity172

in system prices for small systems. The above findings indicate that, first, learning follows173

strongly different magnitudes for large and small systems, and second, experience alone does174

not describe the data well, especially for smaller storage systems. As we have shown in175

our regression results above, further factors such as market concentration, system size, and176

duration play a significant role for total system prices, and in particular for small storage177

systems.178

Balance-of-system costs179

So far, our results point to significant learning in total system prices of larger battery storage180

systems but not for small systems. Next, we explore which cost components are driving these181

results. In particular, we investigate whether observed price declines can be attributed to182

the cost of battery packs or rather to non-battery, i.e. BOS costs.183

Whereas battery packs are arguably a globally traded commodity, BOS costs primarily184

encompass components with mostly local learning, such as installation, permitting, customer185

acquisition, and mark-ups. In addition to these “soft” cost components (O’Shaughnessy186

et al., 2019), BOS costs also entail inverters and other auxiliary hardware like cables.187

Specifically, we proxy BOS costs by deducting battery pack prices from total system188

prices. Since the SGIP data only provides system prices, we use yearly averages for battery189

pack prices from Bloomberg’s battery price survey to compute BOS costs. This approach190

is consistent with earlier studies in the context of solar PV, that examine learning in non-191

module (i.e. BOS) or soft costs after subtracting module (and inverter) costs (Shum and192

Watanabe, 2008; Strupeit and Neij, 2017). Hence, our BOS measure includes the potentially193
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missing ability of installer firms to purchase battery packs at prices published by Bloomberg,194

e.g. because of low order volumes or a lack of trading networks.195
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Figure 4: BOS cost learning curves, with 95% confidence intervals in grey.

To estimate learning in non-battery pack costs, we rerun our one-factor experience curve196

model using BOS costs as the dependent variable. Figure 4 depicts the resulting experience197

rates, again for the small and large segment without further controls. As shown, BOS198

learning is less strong than total system price learning. This holds for both segments, but199

in particular for small systems, where we estimate negative BOS learning of about 7.5%.200

Because BOS learning is slower or negative as compared to total prices, BOS costs make up201

for an increasing share of total battery system prices.202

To illustrate the increasing relevance of non-battery costs, Figure 5 plots the share of203

BOS costs over time. As shown, at the end of our sample in 2022, BOS costs account for204

more than 80% of stationary system prices.205

12



400

800

1200

1600

2000

A
ve

ra
ge

 B
O

S 
co

st
s (

20
21

 U
SD

/k
W

h)

.4

.5

.6

.7

.8

.9

1
Sh

ar
e 

of
 B

O
S 

co
st

s

2014 2015 2016 2017 2018 2019 2020 2021
Year

Large (share) Small (share)
Large (cost) Small (cost)

Figure 5: BOS costs and BOS cost percentage of total prices.

Overall, our findings suggest that local BOS cost learning cannot match the pace of206

upstream battery technology learning. In Supplementary Table 4 we show that our results207

hold when running the extended model with additional controls, e.g. for HHI.208

Separating industry from firm learning209

The previous analysis assumes homogeneous experience spillover effects within California,210

i.e. capacity added by one firm directly factors into the entire experience stock across the211

industry. This assumption is implicit to the vast majority of experience curve studies, and is212

impossible to test without project-level and installer firm-level data. In closing, we exploit213

our data to explicitly investigate the prevalence of spillover effects by separating industry214

from installer firm learning (Irwin and Klenow, 1994; Bollinger and Gillingham, 2019; Nemet215

et al., 2020). Because our earlier findings indicate that reductions in total system prices are216

primarily driven by global progress in battery packs rather than installer-specific BOS costs,217

we expect industry-wide learning to dominate intra-firm learning. We conduct our analysis218
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by computing separate experience stocks for the industry and installer firms, and include219

both as explanatory variables (see Methods).220

Table 3: Industry versus firm learning by segment

Price in 2021
USD/kWh

Price BOS

(1) (2) (3) (4)

SPILL # −0.161∗∗∗ −0.089∗∗∗ −0.127∗∗∗ −0.055∗∗∗

(0.021) (0.013) (0.020) (0.018)
EXP Firm # 0.035∗∗∗ 0.074∗∗∗ 0.034∗∗ 0.085∗∗∗

(0.012) (0.006) (0.014) (0.008)
HHI 0.160∗ 0.434∗∗∗ 0.110 0.499∗∗∗

(0.090) (0.095) (0.101) (0.116)
Size kWh −0.039∗ −0.180∗∗∗ −0.047∗∗ −0.217∗∗∗

(0.020) (0.012) (0.023) (0.014)
Duration −0.119 −0.416∗∗∗ −0.163∗ −0.490∗∗∗

(0.077) (0.031) (0.093) (0.036)

County FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Industry experience rate % 10.57 5.96 8.45 3.71
Firm experience rate % −2.45 −5.30 −2.40 −6.10
Adjusted R2 0.66 0.68 0.54 0.69
N 2,957 25,331 2,957 25,331

All variables except HHI are on log scale. The variable SPILL captures learning from industry-wide experience, i.e. spillover
learning. The variable EXP Firm captures learning from firm-specific experience. For each observation, we compute SPILL
as the industry-wide cumulative number of projects excluding the firm that has installed the observed system. For each
observation, we compute EXP Firm as the cumulative number of projects by the firm that has installed the observed system.
Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed effects.

Table 3 shows the results. In the large segment, industry learning is significant while firm221

learning is negative (column (1)), with attenuated industry learning effects for BOS (column222

(3)). The results for small systems show similar patterns. The magnitude of industry learning223

is lower than for larger systems, with an industry experience rate of 6% for system prices224

(column 2) and 3.7% for BOS (column 4). However, negative firm learning is more than225

twice as large when compared to larger systems. In terms of magnitude, a doubling of firm226

experience is related to an increase in system price by 5.3% and an increase in BOS by 6.1%.227

Put differently, firms with more experience ask for higher prices, on average. This effect is228
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more pronounced for small systems, where, as shown earlier, competition is a relevant driver229

for system prices. These findings indicate that both commercial and especially residential230

customers are willing (or required) to pay for previous experience, e.g. because it is signaling231

market share, reputation, and reliability. Furthermore and as expected, industry learning232

plays a bigger role in explaining system price reductions than intra-firm learning, since the233

latter reflects less dynamic BOS costs and positive margins for experienced installers. Lastly,234

even after controlling for firm learning and a range of further variables, experience rates for235

total system prices and especially for BOS remain much lower than for battery cells and236

packs.237

Discussion238

Our results have several findings relevant to scholars, policy makers, and investors in dis-239

tributed energy storage. First, we provide robust evidence of low learning by doing in system240

prices for battery storage based on rich project-level data. We estimate experience rates of241

about 1.3%, much lower than previously reported. When separating experience curves for242

small (below 10kW) and large (above 10kW) systems, we document experience rates of up to243

11% for larger and -2% for smaller systems. These results highlight the benefit of more dif-244

ferentiated projections. Projections that do not account for the relatively stronger learning245

for large systems may understate future capacity additions, in particular in markets where246

large systems dominate.247

Second, our results show statistically significant and economically relevant effects of mar-248

ket competition on system prices. To increase market penetration, regulators should hence249

facilitate installer competition, in particular for the smaller residential systems. Further-250

more, we find a large effect of system size on system prices, consistent with bottom-up cost251

modeling (Ramasamy et al., 2021). Further scaling up both large and small systems is as-252
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sociated with lower system prices per kWh. To harness scale economies, regulators should253

remove barriers for the operation of larger storage systems, e.g. by allowing for additional254

revenues from providing grid services and trading in peer-to-peer markets.255

Third, we report slower learning in BOS costs compared to total system prices, eventu-256

ally leading to high shares of BOS costs versus battery pack costs. Battery storage hence257

faces a “BOS cost challenge”, as found in the context of soft costs for distributed solar PV258

(O’Shaughnessy et al., 2019). Future policies should therefore focus on reducing BOS costs.259

Potential levers for reducing BOS cost include increased price transparency, e.g. by further260

expanding quote platforms for installers, as well as standardizing permitting and regulatory261

processes. Given the stickiness of BOS costs, our analysis at the same time underscores the262

importance of global cost-reductions of battery packs through innovation and production263

scale-up.264

Fourth, learning at the installer level is negative (reflecting positive margins for expe-265

rienced installers). Hence, observed price reductions are largely driven by industry-wide266

experience with again relatively low experience rates of 4-10%. These findings indicate lit-267

tle within-firm appropriability of experience and point to the existence of spillovers across268

the industry. As such, positive externalities of experience add to the benefits of battery269

storage for decarbonized energy systems. From a policy perspective, these positive external-270

ities lend support for continued subsidy schemes to facilitate further investment in battery271

storage. Whether subsidies are suitable for stimulating adoption, learning, and competitive272

pass-through of learning effects to end-consumers remains an important avenue for future273

research.274
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Methods275

Experience curve model276

To model cost reductions for distributed battery storage systems, we utilize a simple277

mathematical power law known as the “learning curve” (Wright, 1936). Since we are in-278

terested in learning curves for the total system, we predict prices rather than costs. Using279

prices instead of costs is common in the literature because cost data are often not available.280

Learning curves based on price data are commonly referred to as experience curves (Schmidt281

et al., 2017), which we follow in this paper.282

Formally, let P store
t be the deflated price per unit of capacity (kWh) for stationary storage283

systems, P store
0 be the price of the first unit of experience EXP , and b be the learning284

parameter. Then, we can write285

P store
t = P store

0 ∗ EXP b
t . (1)

Assuming a multiplicative error term ε, we can log-linearize the relationship to286

ln(P store
t ) = P store

0 + β1ln(EXPt) + ε, (2)

where β is the estimator for b and represents the learning elasticity. We then obtain the287

learning by doing, i.e. experience, rate as 1−2β. Equation 2 estimates a standard one-factor288

experience curve.289

In our extended model, we add competition (HHI), installation-level economies of scale290

proxied by system size (SIZE, in logs), and fixed effects (φ) as further variables to the basic291

one-factor experience curve. Formally, we estimate292

ln(P store
t ) = P store

0 + β1ln(EXPt) + β2HHIj,t + β3ln(SIZEi) + β4ln(DURi) + φ+ ε, (3)
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where HHI captures the Herfindahl-Hirschman index in county j at time t, SIZE and293

DUR represent system size in kWh and duration in hours of project i, and φ are county294

and installer firm fixed effects. Duration is defined as the ratio of storage capacity (kWh) to295

power rating (kW).296

Finally, we formalize the spillover model as297

ln(P store) = P store
0 + β1ln(SPILLt) + β2ln(EXPk,t) + δ + φ+ ε, (4)

where the first factor SPILL captures industry experience at time t and the second factor,298

EXP , captures experience of firm k at time t. We likewise extend this model to include the299

HHI, system size, duration, and fixed effects, as indicated by δ and φ. In all our models, we300

cluster standard errors at the county level to correct for heteroskedasticity.301

Experience and competition variables construction302

We construct experience, our main explanatory variable, on a per day basis using each303

system’s interconnection date. We use cumulative projects as our main experience proxy304

to reflect our project-level data where most of the learning, if present, arguably realizes per305

installed project, regardless of the exact storage capacity. Accordingly, we calculate the306

cumulative capacity by each firm at any given installation date. In the spillover model, we307

subtract this firm experience from total experience to obtain our industry experience measure308

SPILL Nemet et al. (2020). Following previous literature, we accumulate energy storage309

capacity in kWh (Schmidt et al., 2017; Kittner et al., 2017; Ziegler and Trancik, 2021) as a310

robustness test.311

We use the Herfindahl-Hirschman Index (HHI) to measure competition by county. The312

HHI shows the sum of squared market shares of all firms in the market and is capped at313

one for a monopoly. For every county, we define market share as the share of cumulative314

installations per installer in the previous year (Gillingham et al., 2016).315
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The California SGIP data and further data sources316

The main dataset used in our study is a public export of California’s Self-Generation317

Incentive Program (SGIP) database. This database contains applications for a variety of318

technologies on plant level between 2000 and today. The first battery storage system is319

recorded in 2008 (see discussion surrounding Figure 1 and Supplementary Information, Fig-320

ure 1). Variables include system power and energy capacity, county, eligible costs, incentives,321

involved firms, and application process and status characteristics. In order to remove out-322

liers in terms of price or system design and address potential data errors, we only include323

systems within a price range of 200 to 6,000 USD per kWh (400 to 12,000 USD per kW).324

We also exclude systems with a duration (energy storage capacity divided by power) smaller325

than one or larger than ten. Overall, these cleaning steps affect less than 1% of observations326

and, in untabulated analyses, do not materially impact our results. Importantly, we apply a327

thorough string clean algorithm on firms and counties that adjusts spelling, abbreviations,328

and typos.329

We merge in publicly available battery price data from Bloomberg to compute BOS330

costs from total system prices. To get average prices for batteries used in stationary storage331

systems, we adjust the Bloomberg data in all years. Following the relationship between332

average prices and average prices for stationary storage systems in 2021, we add 15.15% to333

the price index in order to reflect higher average prices for batteries used in stationary storage334

applications (as compared to the raw battery packs prices). Finally, we extract Consumer335

Price Index data from FRED to deflate all monetary variables to 2021 values.336

Robustness checks337

To test the sensitivity of our results to our modeling assumptions, we run a battery338

of robustness checks. Specifically, we (i) alter the definition of experience to cumulative339

installed capacity in kWh, (ii) change the sample period to start in 2014, (iii) consider only340
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systems which the program administrator marked as paid, (iv) drop systems installed by341

SolarCity/Tesla as the corresponding price data might represent appraised values (Barbose342

and Darghouth, 2019), (v) exclude installations by firms with less than 20 observations, (vi)343

set a different size threshold of 50 kWh that defines the segments (small/large), and (vii) use344

unadjusted Bloomberg battery prices to calculate BOS costs. Supplementary Information,345

Tables 5 to 17 contain the results. Our experience rates and further results remain robust346

and largely similar in terms of magnitude.347

References348

Arbabzadeh, Maryam, Ramteen Sioshansi, Jeremiah X. Johnson, and Gregory A. Keoleian349

(2019) “The role of energy storage in deep decarbonization of electricity production,”350

Nature Communications, Vol. 10, p. 3413.351

Arrow, Kenneth J. (1962) “The economic implications of learning by doing,” The Review of352

Economic Studies, Vol. 29, pp. 155–173.353

Barbose, Galen, Salma Elmallah, and Will Gorman (2021) “Behind the meter solar+storage:354

Market data and trends,” Lawrence Berkeley National Laboratory.355
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Supplementary Figure 1: Battery systems and installed capacity by application
year in California. a, number of subsidized storage systems. b, installed storage capaci-
ties. We do not include systems marked as “cancelled” or “waitlist”.
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Supplementary Table 1: Descriptive statistics

mean sd min p25 p50 p75 max

Price kWh 1121.47 482.35 253.33 893.60 1032.13 1176.90 5959.64
Price kW 2625.11 1080.18 497.51 1924.67 2594.14 2894.91 11919.29
BOS cost kWh 918.42 448.75 6.39 690.90 854.49 1003.05 5662.51
Incentive kWh 419.42 313.78 34.72 230.12 279.15 433.38 2755.69
Size kWh 36.97 172.40 2.41 8.52 13.20 26.40 8400.00
Size kW 16.17 78.45 0.54 4.94 5.00 10.00 3000.00
Duration 2.38 0.47 1.00 1.91 2.64 2.64 7.92
EXP # 14871.33 8572.74 1.00 7439.00 14881.00 22348.00 29625.00
EXP Firm # 809.46 1049.75 1.00 69.00 345.00 1078.00 4178.00
EXP MWh 615.24 284.62 0.03 383.42 641.02 864.19 1095.03
HHI 0.18 0.12 0.05 0.11 0.15 0.21 1.00

Observations 28956

This table reports summary statistics for all major regression variables and some additional variables for all SGIP-administered
systems connected by the of December 2021. The Herfindahl-Hirschmann-index (HHI) is normalized between zero (perfect
competition) and one (monopoly) by construction.

Supplementary Table 2: Descriptive statistics - large segment

mean sd min p25 p50 p75 max

Price kWh 1288.94 602.84 382.16 952.73 1066.67 1404.99 5350.18
Price kW 3024.53 1164.04 723.93 2413.96 2755.69 3320.41 11396.12
BOS cost kWh 1023.17 484.79 169.13 779.50 886.80 1147.86 4897.64
Incentive kWh 636.85 385.22 102.15 269.11 443.89 1039.25 2755.69
Size kWh 214.97 495.33 15.00 39.60 39.60 120.00 8400.00
Size kW 97.50 225.38 10.02 15.00 15.00 60.00 3000.00
Duration 2.44 0.49 1.00 2.00 2.64 2.64 7.67
EXP # 16333.38 10012.74 8.00 6338.00 19760.00 25022.00 29625.00
EXP Firm # 537.46 891.73 1.00 22.00 112.00 687.00 4176.00
EXP MWh 650.70 345.40 2.15 324.51 790.57 932.40 1095.03
HHI 0.19 0.14 0.05 0.11 0.14 0.24 1.00

Observations 3061

This table reports summary statistics for all major regression variables and some additional variables for the subsample of
larger systems, i.e. above 10 kW.
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Supplementary Table 3: Descriptive statistics - small segment

mean sd min p25 p50 p75 max

Price kWh 1101.70 462.09 253.33 893.42 1024.96 1157.35 5959.64
Price kW 2577.95 1059.99 497.51 1854.94 2561.11 2858.84 11919.29
BOS cost kWh 906.06 442.67 6.39 687.99 848.25 991.22 5662.51
Incentive kWh 393.72 293.78 34.72 210.68 268.30 389.96 2755.69
Size kWh 15.93 7.39 2.41 8.39 13.20 26.40 79.20
Size kW 6.56 2.36 0.54 4.94 5.00 10.00 20.00
Duration 2.37 0.46 1.00 1.70 2.64 2.64 7.92
EXP # 14698.51 8369.56 1.00 7540.00 14500.00 21876.00 29625.00
EXP Firm # 841.61 1062.31 1.00 83.00 381.00 1148.00 4178.00
EXP MWh 611.05 276.27 0.03 384.97 628.18 851.55 1095.03
HHI 0.18 0.12 0.05 0.11 0.15 0.21 1.00

Observations 25895

This table reports summary statistics for all major regression variables and some additional variables for the subsample of
residential, i.e. small, systems with a power rating of 10 kW or less.

Supplementary Table 4: BOS costs experience curves

BOS costs in
2021 USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.115∗∗∗ −0.087∗∗∗ 0.104∗∗∗ 0.084∗∗∗

(0.010) (0.018) (0.018) (0.010)
HHI 0.084 0.660∗∗∗

(0.103) (0.133)
Size kWh −0.049∗∗ −0.216∗∗∗

(0.023) (0.016)
Duration −0.176∗ −0.518∗∗∗

(0.092) (0.038)

County FE No Yes No Yes
Firm FE No Yes No Yes

Learning rate (%) 7.66 5.88 −7.48 −5.97
Adjusted R2 0.16 0.52 0.06 0.68
N 2,956 2,956 25,331 25,331

This table shows regression results for balance-of-system (BOS) cost. We calculate BOS as total system price from the
SGIP minus adjusted battery pack price as obtained from Bloomberg. All variables except HHI are on log scale. Clustered
standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed effects.
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Supplementary Table 5: Experience curve – sample and period robustness

Price in 2021
USD/kWh

After 2013 Paid

(1) (2) (3) (4)

EXP # −0.011 −0.014
(0.010) (0.012)

EXP kWh −0.039∗∗∗ −0.047∗∗∗

(0.014) (0.016)

Experience rate % 0.74 2.64 0.99 3.20
Adjusted R2 0.00 0.01 0.00 0.01
N 28,258 28,258 25,701 25,701

This table shows robustness tests for one factor experience curves using all connected systems. In columns (1) and (2), we
exclude systems connected in 2013 or before. In columns (3) and (4), we only include systems which the SGIP administrator
marks as “paid”. All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01 indicate significance.

Supplementary Table 6: Experience curve – robustness to excluding installers

Price in 2021
USD/kWh

No SCTE ≥20 instals

(1) (2) (3) (4)

EXP # −0.034∗∗ −0.013
(0.014) (0.011)

EXP kWh −0.055∗∗∗ −0.042∗∗∗

(0.019) (0.015)

Experience rate % 2.35 3.75 0.89 2.87
Adjusted R2 0.01 0.01 0.00 0.01
N 25,564 25,564 27,102 27,102

This table shows robustness tests for one factor experience curves using all connected systems. In columns (1) and (2),
we exclude systems installed by SolarCity/Tesla (SCTE) as the corresponding system prices might be appraised values. In
columns (3) and (4), we only include systems by installers with at least 20 installations over the sample period. All variables
except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate
significance.
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Supplementary Table 7: Segment experience curve – cumulative capacity

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP kWh −0.224∗∗∗ −0.162∗∗∗ 0.010 −0.006
(0.010) (0.026) (0.021) (0.012)

HHI 0.074 0.504∗∗∗

(0.102) (0.123)
Size kWh −0.036∗ −0.165∗∗∗

(0.019) (0.013)
Duration −0.149∗∗ −0.410∗∗∗

(0.071) (0.032)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 14.36 10.64 −0.72 0.44
Adjusted R2 0.39 0.65 0.00 0.67
N 2,957 2,957 25,331 25,331

This table shows regression results by segment when changing the definition of the experience variable from projects to
cumulative capacity in kWh. All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed effects.

Supplementary Table 8: Segment experience curves – starting with 2014 installations

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.173∗∗∗ −0.126∗∗∗ 0.039∗∗∗ 0.022∗∗∗

(0.008) (0.018) (0.011) (0.007)
HHI 0.161∗ 0.580∗∗∗

(0.091) (0.107)
Size kWh −0.039∗∗ −0.173∗∗∗

(0.019) (0.013)
Duration −0.121∗ −0.426∗∗∗

(0.072) (0.031)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 11.28 8.36 −2.75 −1.52
Adjusted R2 0.39 0.65 0.01 0.66
N 2,949 2,949 25,298 25,298

This table shows regression results by segment when excluding systems installed before 2014. All variables except HHI are
on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE
fixed effects.

29



Supplementary Table 9: Segment experience curves – systems classified as paid

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.185∗∗∗ −0.083∗∗∗ 0.026∗ 0.026∗∗∗

(0.007) (0.026) (0.015) (0.007)
HHI 0.326∗∗ 0.623∗∗∗

(0.125) (0.123)
Size kWh −0.038∗ −0.169∗∗∗

(0.021) (0.012)
Duration −1.184∗∗∗ −0.441∗∗∗

(0.204) (0.037)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 12.06 5.62 −1.80 −1.84
Adjusted R2 0.54 0.81 0.01 0.67
N 2,057 2,057 23,634 23,634

This table shows regression results by segment when including only those systems that the SGIP administrator marks as
paid. All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01 indicate significance, FE fixed effects.

Supplementary Table 10: Segment experience curve – excluding SolarCity/Tesla

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.186∗∗∗ −0.110∗∗∗ 0.028 0.033∗∗∗

(0.005) (0.028) (0.022) (0.003)
HHI 0.070 0.166∗∗∗

(0.108) (0.050)
Size kWh −0.101∗∗∗ −0.168∗∗∗

(0.015) (0.017)
Duration −0.444∗∗∗ −0.322∗∗∗

(0.073) (0.027)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 12.10 7.34 −1.99 −2.34
Adjusted R2 0.45 0.70 0.01 0.66
N 2,684 2,684 22,869 22,869

This table shows regression results for the large and small segment when excluding systems installed by SolarCity/Tesla.
All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
indicate significance, FE fixed effects.
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Supplementary Table 11: Segment experience curves – firms with at least 20 observations

Price in 2021
USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.169∗∗∗ −0.132∗∗∗ 0.032∗∗ 0.023∗∗∗

(0.008) (0.017) (0.014) (0.008)
HHI 0.162∗ 0.586∗∗∗

(0.083) (0.107)
Size kWh −0.029 −0.171∗∗∗

(0.022) (0.013)
Duration −0.119 −0.448∗∗∗

(0.075) (0.034)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 11.08 8.76 −2.24 −1.58
Adjusted R2 0.42 0.64 0.01 0.64
N 2,683 2,683 24,408 24,408

This table shows regression results for the large and small segment when excluding very small installer firms, i.e. those with
less than 20 installations over the sample period. All variables except HHI are on log scale. Clustered standard errors are
in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed effects.

Supplementary Table 12: Segment learning curves – new segment definition

Price in 2021
USD/kWh

Large (> 50 kWh) Small (≤ 50 kWh)

(1) (2) (3) (4)

EXP # −0.163∗∗∗ −0.156∗∗∗ 0.006 0.020∗∗∗

(0.008) (0.019) (0.012) (0.007)
HHI −0.025 0.557∗∗∗

(0.106) (0.103)
Size kWh −0.061∗∗∗ −0.146∗∗∗

(0.022) (0.012)
Duration 0.050 −0.472∗∗∗

(0.063) (0.031)

County FE No Yes No Yes
Firm FE No Yes No Yes

Experience rate % 10.71 10.27 −0.43 −1.42
Adjusted R2 0.34 0.63 0.00 0.67
N 1,344 1,344 26,944 26,944

This table shows regression results by segment when deviating from the 10 kW size threshold applied by the California
Public Utilities Commission for budget purposes. In this robustness check, smaller systems have a storage capacity of 50
kWh or less. Large systems have a capacity of more than 50 kWh. All variables except HHI are on log scale. Clustered
standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed effects.
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Supplementary Table 13: BOS experience curves – cumulative capacity

BOS costs in
2021 USD/kWh

Large Small

(1) (2) (3) (4)

EXP kWh −0.151∗∗∗ −0.098∗∗∗ 0.109∗∗∗ 0.075∗∗∗

(0.012) (0.030) (0.026) (0.017)
HHI 0.072 0.609∗∗∗

(0.117) (0.158)
Size kWh −0.047∗ −0.207∗∗∗

(0.024) (0.016)
Duration −0.204∗∗ −0.505∗∗∗

(0.090) (0.040)

County FE No Yes No Yes
Firm FE No Yes No Yes

Learning rate (%) 9.96 6.58 −7.88 −5.37
Adjusted R2 0.16 0.52 0.03 0.67
N 2,956 2,956 25,331 25,331

This table shows regression results for balance-of-system (BOS) cost when using cumulative capacity as a proxy for experi-
ence. All variables except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01 indicate significance, FE fixed effects.

Supplementary Table 14: BOS experience curves – excluding SolarCity/Tesla

BOS costs in
2021 USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.133∗∗∗ −0.058∗ 0.089∗∗∗ 0.093∗∗∗

(0.006) (0.029) (0.026) (0.006)
HHI −0.007 0.130∗∗

(0.104) (0.059)
Size kWh −0.133∗∗∗ −0.206∗∗∗

(0.016) (0.021)
Duration −0.522∗∗∗ −0.388∗∗∗

(0.085) (0.033)

County FE No Yes No Yes
Firm FE No Yes No Yes

Learning rate (%) 8.83 3.93 −6.35 −6.67
Adjusted R2 0.22 0.59 0.04 0.67
N 2,683 2,683 22,869 22,869

This table shows regression results BOS costs when excluding SolarCity/Tesla systems. All variables except HHI are on log
scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance, FE fixed
effects.
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Supplementary Table 15: BOS experience curves – unadjusted battery pack price

BOS costs in
2021 USD/kWh

Large Small

(1) (2) (3) (4)

EXP # −0.125∗∗∗ −0.094∗∗∗ 0.090∗∗∗ 0.072∗∗∗

(0.009) (0.018) (0.017) (0.010)
HHI 0.097 0.651∗∗∗

(0.100) (0.127)
Size kWh −0.047∗∗ −0.208∗∗∗

(0.023) (0.015)
Duration −0.166∗ −0.501∗∗∗

(0.089) (0.037)

County FE No Yes No Yes
Firm FE No Yes No Yes

Learning rate (%) 8.27 6.33 −6.47 −5.11
Adjusted R2 0.20 0.54 0.05 0.68
N 2,956 2,956 25,331 25,331

This table shows regression results for BOS cost, using average battery pack prices reported by Bloomberg to calculate
BOS. In other words, we do not adjust battery pack prices according to their application in stationary storage. All variables
except HHI are on log scale. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate
significance, FE fixed effects.
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Supplementary Table 16: Spillover – cumulative capacity

Price in 2021
USD/kWh

Price BOS

(1) (2) (3) (4)

SPILL kWh −0.259∗∗∗ −0.152∗∗∗ −0.207∗∗∗ −0.109∗∗∗

(0.029) (0.021) (0.033) (0.029)
EXP Firm kWh 0.066∗∗∗ 0.073∗∗∗ 0.067∗∗∗ 0.083∗∗∗

(0.012) (0.007) (0.016) (0.009)
HHI 0.009 0.342∗∗∗ 0.009 0.409∗∗∗

(0.099) (0.097) (0.108) (0.124)
Size kWh −0.045∗∗ −0.181∗∗∗ −0.054∗∗ −0.217∗∗∗

(0.019) (0.013) (0.024) (0.015)
Duration −0.110 −0.404∗∗∗ −0.155∗ −0.480∗∗∗

(0.077) (0.032) (0.092) (0.038)

County FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Industry experience rate (%) 16.45 10.03 13.39 7.26
Firm experience rate (%) −4.69 −5.16 −4.75 −5.96
Adjusted R2 0.66 0.69 0.54 0.69
N 2,957 25,331 2,957 25,331

This table shows robustness tests for the spillover analysis. All variables except HHI are on log scale. The variable SPILL
captures learning from industry-wide experience, i.e. spillover learning. The variable EXP Firm captures learning from
firm-specific experience. For each observation, we compute SPILL as the industry-wide cumulative capacity excluding the
cumulative capacity of the firm that installs the system. For each observation, we compute EXP Firm as the cumulative
capacity of the firm that installs the system. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01 indicate significance, FE fixed effects.
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Supplementary Table 17: Spillover – excluding SolarCity/Tesla

Price in 2021
USD/kWh

Price BOS

(1) (2) (3) (4)

SPILL kWh −0.166∗∗∗ −0.018∗∗ −0.131∗∗∗ 0.029∗∗

(0.033) (0.007) (0.031) (0.012)
EXP Firm # 0.061∗∗∗ 0.033∗∗∗ 0.070∗∗∗ 0.035∗∗∗

(0.012) (0.005) (0.013) (0.007)
HHI 0.096 0.148∗∗∗ 0.036 0.131∗∗

(0.111) (0.044) (0.108) (0.050)
Size kWh −0.100∗∗∗ −0.174∗∗∗ −0.127∗∗∗ −0.206∗∗∗

(0.016) (0.016) (0.016) (0.019)
Duration −0.460∗∗∗ −0.318∗∗∗ −0.528∗∗∗ −0.372∗∗∗

(0.073) (0.027) (0.084) (0.032)

County FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes

Industry experience rate (%) 10.89 1.21 8.68 −2.06
Firm experience rate (%) −4.34 −2.32 −4.95 −2.44
Adjusted R2 0.71 0.67 0.61 0.67
N 2,684 22,869 2,683 22,869

This table shows robustness tests for the spillover analysis. Specifically, we exclude observations from SolarCity/Tesla as
they might represent appraised values. All variables except HHI are on log scale, SPILL and EXP Firm # are defined as in
Table 3 of the paper. Clustered standard errors are in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance,
FE fixed effects.
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